Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities
KTH, Skolan för elektroteknik och datavetenskap (EECS), Medieteknik och interaktionsdesign, MID.
2018 (engelsk)Inngår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 45, s. 148-176Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

Solid oxide fuel cells (SOFCs) show considerable promise for meeting the current ever-increasing energy demand and environmental sustainability requirements because of their high efficiency, low environmental impact, and distinct fuel diversity. In the past few decades, extensive R&D efforts have been focused on lowering operational temperatures in order to decrease the system (stack and balance-of-plant) cost and improve the longevity of operationally useful devices of commercial relevance. Nanomaterials and related nanotechnologies have the potential to improve SOFC performance because of their advantageous functionalities, namely, their enlarged surface area and unique surface and interface properties compared to their microscale analogs. Recently, the use of nanomaterials has increased rapidly, as reflected by the exponential growth in the number of publications since 2002. In this work, we present a comprehensive summary of nanoparticles, nano-thin films and nanocomposites with different crystal phases, morphologies, microstructures, electronic properties, and electrochemical performances for low temperature SOFCs (LT-SOFCs), with focus on efforts to enhance electrical efficiency, to induce novel fundamental properties that are inaccessible in microcrystalline materials, and to promote the commercialization of LT-SOFCs. Recent progress in the applications of many classically or newly chemical and physical nanomaterials and nanofabrication techniques, such as thin film vacuum deposition, impregnation, electrospinning, spark plasma sintering, hard-and soft-template methods, and in-situ nanoparticle surface exsolution are also thoroughly described. The technological and scientific advantages and limitations related to the use of nanomaterials and nanotechnologies are highlighted, along with our expectations for future research within this emerging field.

sted, utgiver, år, opplag, sider
ELSEVIER SCIENCE BV , 2018. Vol. 45, s. 148-176
Emneord [en]
Low temperature solid oxide fuel cells, Nanomaterials and nanotechnology, Nanoionics, Nanocomposite
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-224020DOI: 10.1016/j.nanoen.2017.12.044ISI: 000425396400018Scopus ID: 2-s2.0-85039868017OAI: oai:DiVA.org:kth-224020DiVA, id: diva2:1192810
Merknad

QC 20180323

Tilgjengelig fra: 2018-03-23 Laget: 2018-03-23 Sist oppdatert: 2018-03-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Zhu, Bin

Søk i DiVA

Av forfatter/redaktør
Zhu, Bin
Av organisasjonen
I samme tidsskrift
Nano Energy

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 318 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf