Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Connectedness Constraint for Learning Sparse Graphs
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0001-6992-5771
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0002-6855-5868
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0003-2638-6047
2017 (engelsk)Inngår i: 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), IEEE , 2017, s. 151-155Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Graphs are naturally sparse objects that are used to study many problems involving networks, for example, distributed learning and graph signal processing. In some cases, the graph is not given, but must be learned from the problem and available data. Often it is desirable to learn sparse graphs. However, making a graph highly sparse can split the graph into several disconnected components, leading to several separate networks. The main difficulty is that connectedness is often treated as a combinatorial property, making it hard to enforce in e.g. convex optimization problems. In this article, we show how connectedness of undirected graphs can be formulated as an analytical property and can be enforced as a convex constraint. We especially show how the constraint relates to the distributed consensus problem and graph Laplacian learning. Using simulated and real data, we perform experiments to learn sparse and connected graphs from data.

sted, utgiver, år, opplag, sider
IEEE , 2017. s. 151-155
Serie
European Signal Processing Conference, ISSN 2076-1465
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-226274ISI: 000426986000031Scopus ID: 2-s2.0-85041483337ISBN: 978-0-9928-6267-1 (tryckt)OAI: oai:DiVA.org:kth-226274DiVA, id: diva2:1198964
Konferanse
25th European Signal Processing Conference (EUSIPCO), AUG 28-SEP 02, 2017, GREECE
Merknad

QC 20180419

Tilgjengelig fra: 2018-04-19 Laget: 2018-04-19 Sist oppdatert: 2018-04-19bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Personposter BETA

Sundin, MartinJansson, MagnusChatterjee, Saikat

Søk i DiVA

Av forfatter/redaktør
Sundin, MartinVenkitaraman, ArunJansson, MagnusChatterjee, Saikat
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 141 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf