Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K+ channel
Univ Wisconsin, SMPH, Dept Neurosci, Madison, WI 53706 USA.;NINDS, Mol Physiol & Biophys Sect, Porter Neurosci Res Ctr, NIH, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA..
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik. KTH, Centra, Science for Life Laboratory, SciLifeLab.
Univ Wisconsin, SMPH, Dept Neurosci, Madison, WI 53706 USA.;Cellular Dynam Int Inc, Madison, WI USA..
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik. KTH, Centra, Science for Life Laboratory, SciLifeLab.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Nature Structural & Molecular Biology, ISSN 1545-9993, E-ISSN 1545-9985, Vol. 25, nr 4, s. 320-326Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Membrane potential regulates the activity of voltage-dependent ion channels via specialized voltage-sensing modules, but the mechanisms involved in coupling voltage-sensor movement to pore opening remain unclear owing to a lack of resting state structures and robust methods to identify allosteric pathways. Here, using a newly developed interaction-energy analysis, we probe the interfaces of the voltage-sensing and pore modules in the Drosophila Shaker K+ channel. Our measurements reveal unexpectedly strong equilibrium gating interactions between contacts at the S4 and S5 helices in addition to those between S6 and the S4-S5 linker. Network analysis of MD trajectories shows that the voltage-sensor and pore motions are linked by two distinct pathways: a canonical pathway through the S4-S5 linker and a hitherto unknown pathway akin to rack-and-pinion coupling involving the S4 and S5 helices. Our findings highlight the central role of the S5 helix in electromechanical transduction in the voltage-gated ion channel (VGIC) superfamily.

sted, utgiver, år, opplag, sider
Nature Publishing Group, 2018. Vol. 25, nr 4, s. 320-326
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-226784DOI: 10.1038/s41594-018-0047-3ISI: 000429301800005PubMedID: 29581567Scopus ID: 2-s2.0-85044457903OAI: oai:DiVA.org:kth-226784DiVA, id: diva2:1204429
Forskningsfinansiär
Science for Life Laboratory - a national resource center for high-throughput molecular bioscience
Merknad

QC 20180508

Tilgjengelig fra: 2018-05-08 Laget: 2018-05-08 Sist oppdatert: 2018-06-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Søk i DiVA

Av forfatter/redaktør
Harpole, Tyler J.Delemotte, Lucie
Av organisasjonen
I samme tidsskrift
Nature Structural & Molecular Biology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 123 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf