Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Empirical Valence Bond Simulations Suggest a Direct Hydride Transfer Mechanism for Human Diamine Oxidase
Rudjer Boskovic Inst, Div Organ Chem & Biochem, Computat Organ Chem & Biochem Grp, Bijenicka Cesta 54, Zagreb 10000, Croatia.;Univ Zagreb, Fac Sci, Dept Chem, Horvatovac 102a, Zagreb 10000, Croatia.;Uppsala Univ, Dept Cell & Mol Biol, BMC Box 596, S-75124 Uppsala, Sweden..
Uppsala Univ, Dept Cell & Mol Biol, BMC Box 596, S-75124 Uppsala, Sweden..ORCID-id: 0000-0002-1834-7358
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biofysik. KTH, Centra, Science for Life Laboratory, SciLifeLab. Uppsala Univ, Dept Cell & Mol Biol, BMC Box 596, S-75124 Uppsala, Sweden.
Rudjer Boskovic Inst, Div Organ Chem & Biochem, Computat Organ Chem & Biochem Grp, Bijenicka Cesta 54, Zagreb 10000, Croatia..
Vise andre og tillknytning
2018 (engelsk)Inngår i: ACS OMEGA, ISSN 2470-1343, Vol. 3, nr 4, s. 3665-3674Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Diamine oxidase (DAO) is an enzyme involved in the regulation of cell proliferation and the immune response. This enzyme performs oxidative deamination in the catabolism of biogenic amines, including, among others, histamine, putrescine, spermidine, and spermine. The mechanistic details underlying the reductive half-reaction of the DAO-catalyzed oxidative deamination which leads to the reduced enzyme cofactor and the aldehyde product are, however, still under debate. The catalytic mechanism was proposed to involve a prototropic shift from the substrateSchiff base to the product-Schiff base, which includes the ratelimiting cleavage of the C alpha-H bond by the conserved catalytic aspartate. Our detailed mechanistic study, performed using a combined quantum chemical cluster approach with empirical valence bond simulations, suggests that the rate-limiting cleavage of the C alpha-H bond involves direct hydride transfer to the topaquinone cofactor. a mechanism that does not involve the formation of a Schiff base. Additional investigation of the D373E and D373N variants supported the hypothesis that the conserved catalytic aspartate is indeed essential for the reaction; however, it does not appear to serve as the catalytic base, as previously suggested. Rather, the electrostatic contributions of the most significant residues (including D373), together with the proximity of the Cu2+ cation to the reaction site, lower the activation barrier to drive the chemical reaction.

sted, utgiver, år, opplag, sider
AMER CHEMICAL SOC , 2018. Vol. 3, nr 4, s. 3665-3674
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-227228DOI: 10.1021/acsomega.8b00346ISI: 000430200300005Scopus ID: 2-s2.0-85044995363OAI: oai:DiVA.org:kth-227228DiVA, id: diva2:1207898
Merknad

QC 20180518

Tilgjengelig fra: 2018-05-18 Laget: 2018-05-18 Sist oppdatert: 2018-05-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Petrovic, Dusan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 97 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf