Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Solute transport along a single fracture with a finite extent of matrix: A new simple solution and temporal moment analysis
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.ORCID-id: 0000-0003-2353-6505
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 562, s. 290-304Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A new simple and robust solution, based on uniform steady-state flow velocity, is developed for the problem of solute transport in a fracture-matrix system with a finite penetration depth of a radioactive contaminant into the rock matrix. The solution is an extension of Liu et al. (2017) to finite penetration depth and an alternative solution strategy to the problem solved by Sudicky et al. (1982). The solution takes the form of a convolution of two functions. The first function describes the probability density function of the residence time distribution of a conservative solute resulting merely from advection and Fickian dispersion. The second function is actually the impulse response of the fracture-matrix system in the case of a plug flow without any hydrodynamic dispersion. As a result, the effects of Fickian dispersion and matrix diffusion on solute transport are decoupled, and thus the resulting breakthrough curve can be analyzed in terms of those two functions. In addition to this, the derived Péclet numbers of those two functions, based on temporal moments, are also found to be associated with the derived Péclet number of the resulting breakthrough curve. By comparing the Péclet numbers of those two functions, the contribution of Fickian dispersion and matrix diffusion to solute spreading is determined in a straightforward way. This can aid to find out the dominating mechanism on solute transport, and therefore the performance of breakthrough curve.

sted, utgiver, år, opplag, sider
Elsevier, 2018. Vol. 562, s. 290-304
Emneord [en]
Dispersion, Fractured rocks, Matrix diffusion, Péclet number, Solute transport model, Temporal moment analysis
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-228725DOI: 10.1016/j.jhydrol.2018.05.016ISI: 000438003000022Scopus ID: 2-s2.0-85047099016OAI: oai:DiVA.org:kth-228725DiVA, id: diva2:1210739
Forskningsfinansiär
Swedish Nuclear Fuel and Waste Management Company, SKB
Merknad

QC 20180529

Tilgjengelig fra: 2018-05-29 Laget: 2018-05-29 Sist oppdatert: 2018-07-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Meng, ShuoLiu, LongchengMahmoudzadeh, BatoulNeretnieks, IvarsMoreno, Luis

Søk i DiVA

Av forfatter/redaktør
Meng, ShuoLiu, LongchengMahmoudzadeh, BatoulNeretnieks, IvarsMoreno, Luis
Av organisasjonen
I samme tidsskrift
Journal of Hydrology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 50 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf