Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
End-to-End Error-Correcting Codes on Networks With Worst-Case Bit Errors
KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap.
Chinese Univ Hong Kong, Dept Informat Engn, SE-10044 Stockholm, Sweden..
2018 (engelsk)Inngår i: IEEE Transactions on Information Theory, ISSN 0018-9448, E-ISSN 1557-9654, Vol. 64, nr 6, s. 4467-4479Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In highly dynamic wireless networks, communications face several challenges. In the first place, noise levels between nodes might be difficult to predict a priori. Besides, a Byzantine attacker hidden in the network, with knowledge of the network topology and observation of all transmissions, can choose arbitrary locations to inject corrupted packets. Considering that transmissions are usually in bits and hardware in wireless networks usually use modulation schemes with the size of modulation alphabet being powers of two, e.g. BPSK, QPSK, 16-QAM, 64-QAM, and so on, to address the above problem, we study coding for networks experiencing worst case bit errors, and with network codes over binary extension fields. We demonstrate that in this setup prior network error-correcting schemes can be arbitrarily far from achieving the optimal network throughput. A new transform metric for errors under the considered model is proposed. Using this metric, we replicate many of the classical results from coding theory. Specifically, new Hamming-type, Plotkin-type, and Elias-Bassalygo-type upper bounds on the network capacity are derived. A commensurate lower bound is shown based on Gilbert-Varshamov (GV)-type codes for error-correction. The GV codes used to attain the lower bound can be non-coherent, that is, they require neither prior knowledge of the network topology nor network coding kernels. We also propose a computationally efficient concatenation scheme. The rate achieved by our concatenated codes is characterized by a Zyablov-type lower bound. We provide a generalized minimum-distance decoding algorithm which decodes up to half the minimum distance of the concatenated codes. The end-to-end nature of our design enables our codes to be overlaid on the classical distributed random linear network codes. The other advantage of the end-to-end strategy over the link-by-link error-correction is that it reduces the computational cost at the internal nodes for performing error-correction.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2018. Vol. 64, nr 6, s. 4467-4479
Emneord [en]
Network error-correcting, worst-case errors, upper and lower bounds
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-230484DOI: 10.1109/TIT.2018.2817801ISI: 000432983500032Scopus ID: 2-s2.0-85044335364OAI: oai:DiVA.org:kth-230484DiVA, id: diva2:1218130
Forskningsfinansiär
Knut and Alice Wallenberg Foundation
Merknad

QC 20180614

Tilgjengelig fra: 2018-06-14 Laget: 2018-06-14 Sist oppdatert: 2018-11-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Wang, Qiwen

Søk i DiVA

Av forfatter/redaktør
Wang, Qiwen
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Information Theory

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 20 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf