Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analysis of public RNA-sequencing data reveals biological consequences of genetic heterogeneity in cell line populations
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi.ORCID-id: 0000-0003-0492-9960
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi.ORCID-id: 0000-0001-6990-1905
2018 (engelsk)Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, artikkel-id 11226Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Meta-analysis of datasets available in public repositories are used to gather and summarise experiments performed across laboratories, as well as to explore consistency of scientific findings. As data quality and biological equivalency across samples may obscure such analyses and consequently their conclusions, we investigated the comparability of 85 public RNA-seq cell line datasets. Thousands of pairwise comparisons of single nucleotide variants in 139 samples revealed variable genetic heterogeneity of the eight cell line populations analysed as well as variable data quality. The H9 and HCT116 cell lines were found to be remarkably stable across laboratories (with median concordances of 99.2% and 98.5%, respectively), in contrast to the highly variable HeLa cells (89.3%). We show that the genetic heterogeneity encountered greatly affects gene expression between same-cell comparisons, highlighting the importance of interrogating the biological equivalency of samples when comparing experimental datasets. Both the number of differentially expressed genes and the expression levels negatively correlate with the genetic heterogeneity. Finally, we demonstrate how comparing genetically heterogeneous datasets affect gene expression analyses and that high dissimilarity between same-cell datasets alters the expression of more than 300 cancer-related genes, which are often the focus of studies using cell lines.

sted, utgiver, år, opplag, sider
Nature Publishing Group, 2018. Vol. 8, artikkel-id 11226
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-232882DOI: 10.1038/s41598-018-29506-3ISI: 000439686700049PubMedID: 30046134Scopus ID: 2-s2.0-85050698721OAI: oai:DiVA.org:kth-232882DiVA, id: diva2:1237673
Merknad

QC 20180809

Tilgjengelig fra: 2018-08-09 Laget: 2018-08-09 Sist oppdatert: 2019-05-15bibliografisk kontrollert
Inngår i avhandling
1. Exploring genetic heterogeneity in cancer using high-throughput DNA and RNA sequencing
Åpne denne publikasjonen i ny fane eller vindu >>Exploring genetic heterogeneity in cancer using high-throughput DNA and RNA sequencing
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

High-throughput sequencing (HTS) technology has revolutionised the biomedical sciences, where it is used to analyse the genetic makeup and gene expression patterns of both primary patient tissue samples and models cultivated in vitro. This makes it especially useful for research on cancer, a disease that is characterised by its deadliness and genetic heterogeneity. This inherent genetic variation is an important aspect that warrants exploration, and the depth and breadth that HTS possesses makes it well-suited to investigate this facet of cancer.

The types of analyses that may be accomplished with HTS technologies are many, but they may be divided into two groups: those that analyse the DNA of the sample in question, and those that work on the RNA. While DNA-based methods give information regarding the genetic landscape of the sample, RNA-based analyses yield data regarding gene expression patterns; both of these methods have already been used to investigate the heterogeneity present in cancer. While RNA-based methods are traditionally used exclusively for expression analyses, the data they yield may also be utilised to investigate the genetic variation present in the samples. This type of RNA-based analysis is seldom performed, however, and valuable information is thus ignored.

The aim of this thesis is the development and application of DNA- and RNA- based HTS methods for analysing genetic heterogeneity within the context of cancer. The present investigation demonstrates that not only may RNA-based sequencing be used to successfully differentiate different in vitro cancer models through their genetic makeup, but that this may also be done for primary patient data. A pipeline for these types of analyses is established and evaluated, showing it to be both robust to several technical parameters as well as possess a broad scope of analytical possibilities. Genetic variation within cancer models in public databases are evaluated and demonstrated to affect gene expression in several cases. Both inter- and intra-patient genetic heterogeneity is shown using the established pipeline, in addition to demonstrating that cancerous cells are more heterogeneous than their normal neighbours. Finally, two bioinformatic open source software packages are presented.

The results presented herein demonstrate that genetic analyses using RNA-based methods represent excellent complements to already existing DNA-based techniques, and further increase the already large scope of how HTS technologies may be utilised.

sted, utgiver, år, opplag, sider
Stockholm: Kungliga tekniska högskolan, 2018. s. 83
Serie
TRITA-CBH-FOU ; 2018:31
Emneord
Biotechnology, bioinformatics, RNA-seq, WGS, WES, systems biology, variant analysis, single nucleotide variant, gene expression, machine learning, clustering, open source, R, bioconductor, Python
HSV kategori
Forskningsprogram
Bioteknologi
Identifikatorer
urn:nbn:se:kth:diva-234265 (URN)978-91-7729-918-9 (ISBN)
Disputas
2018-10-05, FR4, Oskar Klein's Auditorium, Albanova, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

QC 20180906

Tilgjengelig fra: 2018-09-06 Laget: 2018-09-05 Sist oppdatert: 2018-09-06bibliografisk kontrollert

Open Access i DiVA

fulltext(1756 kB)17 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1756 kBChecksum SHA-512
9f7951b6d76c974d1fede993798107f161bb1c9c607367f8ab0b83b20e2579d90101d2b9dd31d677afae45c986bcadfe19829e0868ad0207ccbe8a1132b1e19d
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Fasterius, ErikAl-Khalili Szigyarto, Cristina

Søk i DiVA

Av forfatter/redaktør
Fasterius, ErikAl-Khalili Szigyarto, Cristina
Av organisasjonen
I samme tidsskrift
Scientific Reports

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 17 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 289 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf