Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.ORCID-id: 0000-0001-6171-9586
RISE SICS, Stockholm, Sweden.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS. RISE SICS, Stockholm, Sweden..ORCID-id: 0000-0003-4516-7317
KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.ORCID-id: 0000-0002-6779-7435
2018 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Short-term traffic prediction allows Intelligent Transport Systems to proactively respond to events before they happen. With the rapid increase in the amount, quality, and detail of traffic data, new techniques are required that can exploit the information in the data in order to provide better results while being able to scale and cope with increasing amounts of data and growing cities. We propose and compare three models for short-term road traffic density prediction based on Long Short-Term Memory (LSTM) neural networks. We have trained the models using real traffic data collected by Motorway Control System in Stockholm that monitors highways and collects flow and speed data per lane every minute from radar sensors. In order to deal with the challenge of scale and to improve prediction accuracy, we propose to partition the road network into road stretches and junctions, and to model each of the partitions with one or more LSTM neural networks. Our evaluation results show that partitioning of roads improves the prediction accuracy by reducing the root mean square error by the factor of 5. We show that we can reduce the complexity of LSTM network by limiting the number of input sensors, on average to 35% of the original number, without compromising the prediction accuracy.

sted, utgiver, år, opplag, sider
IEEE Computer Society Digital Library, 2018. s. 57-65
Emneord [en]
LSTM, neural networks, traffic prediction
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
URN: urn:nbn:se:kth:diva-236055DOI: 10.1109/BigDataCongress.2018.00015ISI: 000450160400008Scopus ID: 2-s2.0-85054887478OAI: oai:DiVA.org:kth-236055DiVA, id: diva2:1255663
Konferanse
2018 IEEE International Congress on Big Data (BigData Congress)
Merknad

QC 20181015

Tilgjengelig fra: 2018-10-14 Laget: 2018-10-14 Sist oppdatert: 2019-03-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Abbas, ZainabGirdzijauskas, SarunasVlassov, Vladimir
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1361 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf