Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Periodic Structures with Higher Symmetries: Analysis and Applications
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elektroteknisk teori och konstruktion.ORCID-id: 0000-0002-9665-8557
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In this thesis, periodic structures with higher symmetries are studied. Their wave propagation characteristics are investigated and their potential applications are discussed. 

Higher-symmetric periodic structures are described with an additional geometrical operation beyond a translation operator. Two particular types of higher symmetry are glide and twist symmetries. Glide-symmetric periodic structures remain invariant under a translation of half a period followed by a reflection with respect to a glide plane. Twist-symmetric periodic structures remain invariant under a translation along followed by a rotation around a twist axis. 

In a periodic structure with a higher symmetry, in which the higher order modes are excited, the frequency dispersion of the first mode is dramatically reduced. This feature overcomes the bandwidth limitations of conventional periodic structures. Therefore, higher-symmetric periodic structures can be employed for designing wideband metasurface-based antennas. For example, holey glide-symmetric metallic structures can be used to design low loss, wideband flat Luneburg lens antennas at millimeter waves, which find application in 5G communication systems. In addition, holey glide-symmetric structures can be exploited as low cost electromagnetic band gap (EBG) structures at millimeter waves, due to a wider stop-band achievable compared to non-glide-symmetric surfaces. 

However, these attractive dispersive features can be obtained if holey surfaces are strongly coupled, so higher-order modes produce a considerable coupling between glide-symmetric holes. Hence, these structures cannot be analyzed using common homogenization methods based on the transverse resonance method. Thus, in this thesis, a mode matching formulation, taking the generalized Floquet theorem into account, is applied to analyze glide-symmetric holey periodic structures with arbitrary shape of the hole. Applying the generalized Floquet theorem, the computational domain is reduced to half of the unit cell. The method is faster and more efficient than the commercial software such as CST Microwave Studio. In addition, the proposed method provides a physical insight about the symmetry of Floquet modes propagating in these structures. 

Moreover, in this thesis, the effect of twist symmetry and polar glide symmetry applied to a coaxial line loaded with holes is explained. A rigorous definition of polar glide symmetry, which is equivalent to glide symmetry in a cylindrical coordinate, is presented. It is demonstrated that the twist and polar glide symmetries provide an additional degree of freedom to engineer the dispersion characteristics of periodic structures. In addition, it is demonstrated that the combination of these two symmetries provides the possibility of designing reconfigurable filters. Finally, mimicking the twist symmetry effect in a flat structure possessing glide symmetry is investigated. The results demonstrate that the dispersion properties associated with twist symmetry can be mimicked in flat structures.

 

Abstract [sv]

Denna avhandling behandlar periodiska strukturer med högre symmetrier. Deras vågutbredningsegenskaper undersöks och deras potentiella tillämpningar diskuteras.

Periodiska strukturer med högre symmetrier beskrivs med ytterligare en geometrisk operator, utöver den translationsoperator. Två specialfall av högre symmetrier är glid- och vridsymmetrier. Glidsymmetriska periodiska strukturer är invarianta under en translation (glidning) på en halvperiod följt av en reflektion med avseende på ett glidplan. Vridsymmetriska periodiska strukturer är invarianta under en translation längs med följt av en rotation kring en vridningsaxel.

I en högsymmetrisk periodisk struktur, innehrillande flera högre ordningens moder, fås en dramatisk minskning av frekvensdispersionen för den första moden, varigenom den bandbreddsbegränsning som finns i konventionella periodiska strukturer kan övervinnas. Därigenom kan högsymmetriska strukturer användas vid utformandet av bredbandiga antenner baserade på metaytor. Till exempel kan urkärnade glidsymmetriska metallstrukturer användas för att utforma bredbandiga Luneburg-linser med låga förluster, vilka för millimetervågor har tillämpningar inom femte generationens kommunikationssystem (5G). Dessutom kan dessa strukturer utnyttjas som kostnadseffektiva elektromagnetiska bandgap (EBG)-strukturer för millimetervågor.

På grund av förekomsten av högre ordningens moder kan emellertid inte högsymmetriska periodiska strukturer med starkt kopplade skikt analyseras med användning av den konventionella transversella resonansmetoden. Därför används i denna avhandling en modanpassningsmetod, vars formulering bygger på den generaliserade versionen av Floquets teorem, för att analysera glidsymmetriska urkärnade periodiska strukturer där hålen har godtyckligt tvärsnitt. Användingen av Floquets generaliserade teorem halverar storleken på beräkningsdomänen och metoden är både snabbare och effektivare än kommersiella programvaror som CST Microwave Studio. Dessutom bidrar den föreslagna metoden till fysikalisk förståelse genom symmetriegenskaperna hos de Floquet-moder som utbreder sig i de högsymmetriska strukturerna.

Vidare definieras polär glidssymmetri, som motsvarar glidsymmetri i ett cylindriskt koordinatsystem, och en förklaring ges hur den tillsammans med vridsymmetri kan tillämpas på koaxiella strukturer. Det visas att vrid- och polärglidssymmetrier ger ytterligare en frihetsgrad vid utformandet av dispersionsegenskaperna hos periodiska strukturer. Dessutom demonstreras att kombinationen av dessa två symmetrier ger möjligheten att designa omkonfigurerbara filter. Slutligen visas att dispersionsegenskaperna associerade med vridsymmetri kan efterliknas i plana strukturer.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2018. , s. 52
Serie
TRITA-EECS-AVL ; 2018:92
Emneord [en]
periodic structures, higher symmetries, dispersion analysis, mode matching, generalized Floquet theorem
HSV kategori
Forskningsprogram
Elektro- och systemteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-239141ISBN: 978-91-7873-035-3 (tryckt)OAI: oai:DiVA.org:kth-239141DiVA, id: diva2:1263814
Disputas
2018-12-14, Kollegiesalen, Brinellvägen 8, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Merknad

QC 20181119

Tilgjengelig fra: 2018-11-19 Laget: 2018-11-16 Sist oppdatert: 2022-06-26bibliografisk kontrollert
Delarbeid
1. Dispersion Analysis of 2-D Glide-Symmetric Corrugated Metasurfaces Using Mode-Matching Technique
Åpne denne publikasjonen i ny fane eller vindu >>Dispersion Analysis of 2-D Glide-Symmetric Corrugated Metasurfaces Using Mode-Matching Technique
2018 (engelsk)Inngår i: IEEE Microwave and Wireless Components Letters, ISSN 1531-1309, E-ISSN 1558-1764, Vol. 28, nr 1, s. 1-3Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this letter, wave propagation in 2-D doubled corrugated metasurfaces, including glide-symmetric corrugated metasurfaces, embedded in a thin parallel plate waveguide have been analyzed using the mode matching method. The general dispersion equation for propagation at different directions is derived and dispersion surfaces have been obtained for three different cases. The results are in good agreement with reference results obtained using CST Microwave Studio. Moreover, the method is accurate and computationally much faster than CST Microwave Studio and similar commercial software.

sted, utgiver, år, opplag, sider
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2018
Emneord
Corrugated surfaces, dispersion analysis, glide-symmetric metasurface, mode matching, planar lenses
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-222198 (URN)10.1109/LMWC.2017.2769881 (DOI)000422937500001 ()2-s2.0-85035751387 (Scopus ID)
Merknad

QC 20180205

Tilgjengelig fra: 2018-02-05 Laget: 2018-02-05 Sist oppdatert: 2022-06-26bibliografisk kontrollert
2. Glide-Symmetric All-Metal Holey Metasurfaces for Low-Dispersive Artificial Materials: Modeling and Properties
Åpne denne publikasjonen i ny fane eller vindu >>Glide-Symmetric All-Metal Holey Metasurfaces for Low-Dispersive Artificial Materials: Modeling and Properties
2018 (engelsk)Inngår i: IEEE transactions on microwave theory and techniques, ISSN 0018-9480, E-ISSN 1557-9670, Vol. 66, nr 7, s. 3210-3223Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We study the wave propagation between two glide-symmetric metallic plates drilled with periodic rectangular holes. A mode-matching method is proposed in order to derive efficiently the dispersive properties of these periodic structures. The method takes advantage of the higher symmetry of the structure reducing the computational cost by enforcing boundary conditions on the field on only one of the two surfaces. Physical insight on specific symmetry properties of Floquet harmonics in glide-symmetric structures is also gained. The code is validated with commercial software assessing its accuracy when varying the most influential/critical parameters. We confirm the potential of glide-symmetric structures to tune the effective refractive index. Specifically, we demonstrate that glide-symmetric structures with rectangular shapes can be employed to synthesize anisotropic refractive indexes with a large band of operation, which makes such metasurface structures applicable for the realization of ultrawideband planar lenses.

sted, utgiver, år, opplag, sider
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2018
Emneord
Dispersive analyses, glide symmetry, higher symmetries, metasurfaces, mode matching, numerical methods, periodic structures
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-232403 (URN)10.1109/TMTT.2018.2829885 (DOI)000437267000004 ()2-s2.0-85046826667 (Scopus ID)
Forskningsfinansiär
The Swedish Foundation for International Cooperation in Research and Higher Education (STINT)
Merknad

QC 20180726

Tilgjengelig fra: 2018-07-26 Laget: 2018-07-26 Sist oppdatert: 2022-06-26bibliografisk kontrollert
3. Analyzing Glide-Symmetric Holey Metasurfaces Using a Generalized Floquet Theorem
Åpne denne publikasjonen i ny fane eller vindu >>Analyzing Glide-Symmetric Holey Metasurfaces Using a Generalized Floquet Theorem
2018 (engelsk)Inngår i: IEEE Access, E-ISSN 2169-3536Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
IEEE, 2018
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-239134 (URN)10.1109/ACCESS.2018.2882056 (DOI)000453416200001 ()2-s2.0-85056744450 (Scopus ID)
Merknad

QC 20181120

Tilgjengelig fra: 2018-11-16 Laget: 2018-11-16 Sist oppdatert: 2024-03-18bibliografisk kontrollert
4. Twist and Polar Glide Symmetries: an Additional Degree of Freedom to Control the Propagation Characteristics of Periodic Structures
Åpne denne publikasjonen i ny fane eller vindu >>Twist and Polar Glide Symmetries: an Additional Degree of Freedom to Control the Propagation Characteristics of Periodic Structures
2018 (engelsk)Inngår i: Scientific Reports, E-ISSN 2045-2322, Vol. 8Artikkel i tidsskrift, Editorial material (Fagfellevurdert) Published
Abstract [en]

New high-frequency 5G and satellite communication systems require fully-metallic antennas and electromagnetic components. These components can be implemented with truncated versions of periodic structures. In order to achieve the desired performance of these future devices, it is of crucial importance to have a precise control of the propagation properties, i.e. the frequency dispersion behavior and stop-bands. Here, we demonstrate the potential use of higher symmetries to diminish the frequency dispersion of periodic structures and control the width of stop-bands with a new type of fully-metallic transmission line, which is loaded with holes on a twist-symmetric configuration. Simulated and experimental results confirm the intrinsic link between the propagation characteristics and the symmetries of a periodic structure. Additionally, we provide a definitive explanation of the recently discovered polar glide symmetry and its potential combination with twist symmetries to produce low-dispersive materials and reconfigurable stop-bands. The promising properties of these structures are demonstrated with a fully-metallic reconfigurable filter, which could be used for future high-frequency 5G and satellite communication systems.

HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-239132 (URN)10.1038/s41598-018-29565-6 (DOI)000439805700027 ()30050140 (PubMedID)2-s2.0-85050674647 (Scopus ID)
Merknad

QC 20181120

Tilgjengelig fra: 2018-11-16 Laget: 2018-11-16 Sist oppdatert: 2024-03-18bibliografisk kontrollert
5. Mimicking Twist Symmetry Properties in Flat Structures
Åpne denne publikasjonen i ny fane eller vindu >>Mimicking Twist Symmetry Properties in Flat Structures
2019 (engelsk)Inngår i: 13th European Conference on Antennas andPropagation (EUCAP), Institute of Electrical and Electronics Engineers (IEEE), 2019Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Twist symmetry provides an additional degree of freedom to control the wave propagation in periodic structures. However, real twist-symmetric structures are cylindrical structures that have a high cost of manufacturing. In addition, they are not compatible with the available, low-cost and flat technologies, such as microstrip technology. Here, we investigate the possibility of mimicking the dispersion properties of twist symmetry in flat structures.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2019
Serie
Proceedings of the European Conference on Antennas and Propagation, ISSN 2164-3342
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-239136 (URN)000480384702019 ()2-s2.0-85068453025 (Scopus ID)978-8-8907-0188-7 (ISBN)
Konferanse
13th European Conference on Antennas and Propagation (EuCAP),MAR 31-APR 05, 2019, Krakow, Poland
Merknad

QC 20210915

Tilgjengelig fra: 2018-11-16 Laget: 2018-11-16 Sist oppdatert: 2024-03-18bibliografisk kontrollert

Open Access i DiVA

fulltext(1598 kB)1860 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1598 kBChecksum SHA-512
6bf45a6e318cfe6ef2d5195160c0c7d8186ad6145635d79ba165b9cc01da9d1f7e7227278adfe74dfade8f303a0f96ce6085c2b40f9ab017198a2a9499c18ce5
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Ghasemifard, Fatemeh
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1860 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 3661 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf