Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Chemical Dopant Engineering in Hole Transport Layers for Efficient Perovskite Solar Cells: Insight into the Interfacial Recombination
Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia..
KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia..
Swinburne Univ Technol, Ctr Microphoton, Melbourne, Vic 3122, Australia..
Vise andre og tillknytning
2018 (engelsk)Inngår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 12, nr 10, s. 10452-10462Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Chemical doping of organic semiconductors has been recognized as an effective way to enhance the electrical conductivity. In perovskite solar cells (PSCs), various types of dopants have been developed for organic hole transport materials (HTMs); however, the knowledge of the basic requirements for being efficient dopants as well as the comprehensive roles of the dopants in PSCs has not been clearly revealed. Here, three copper-based complexes with controlled redox activities are applied as dopants in PSCs, and it is found that the oxidative reactivity of dopants presents substantial impacts on conductivity, charge dynamics, and solar cell performance. A significant improvement of open- circuit voltage (V-oc) by more than 100 mV and an increase of power conversion efficiency from 13.2 to 19.3% have been achieved by tuning the doping level of the HTM. The observed large variation of V-oc for three dopants reveals their different recombination kinetics at the perovskite/HTM interfaces and suggests a model of an interfacial recombination mechanism. We also suggest that the dopants in HTMs can also affect the charge recombination kinetics as well as the solar cell performance. Based on these findings, a strategy is proposed to physically passivate the electron- hole recombination by inserting an ultrathin Al2O3 insulating layer between the perovskite and the HTM. This strategy contributes a significant enhancement of the power conversion efficiency and environmental stability, indicating that dopant engineering is one crucial way to further improve the performance of PSCs.

sted, utgiver, år, opplag, sider
American Chemical Society (ACS), 2018. Vol. 12, nr 10, s. 10452-10462
Emneord [en]
chemical dopants, hole transport materials, perovskite solar cells, interfacial recombination, passivation, Al2O3
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-239110DOI: 10.1021/acsnano.8b06062ISI: 000448751800083PubMedID: 30207694Scopus ID: 2-s2.0-85053682102OAI: oai:DiVA.org:kth-239110DiVA, id: diva2:1264695
Merknad

QC 20181121

Tilgjengelig fra: 2018-11-21 Laget: 2018-11-21 Sist oppdatert: 2019-08-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Daniel, QuentinSun, Licheng

Søk i DiVA

Av forfatter/redaktør
Daniel, QuentinSun, Licheng
Av organisasjonen
I samme tidsskrift
ACS Nano

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 112 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf