RefereraExportera$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt178",{id:"formSmash:upper:j_idt178",widgetVar:"widget_formSmash_upper_j_idt178",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt181_j_idt187",{id:"formSmash:upper:j_idt181:j_idt187",widgetVar:"widget_formSmash_upper_j_idt181_j_idt187",target:"formSmash:upper:j_idt181:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Projected primal-dual gradient flow of augmented Lagrangian with application to distributed maximization of the algebraic connectivity of a networkPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2018 (engelsk)Inngår i: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 98, s. 34-41Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

Elsevier, 2018. Vol. 98, s. 34-41
##### Emneord [en]

Projected dynamical systems, Semi-definite programming, Distributed optimization
##### HSV kategori

##### Identifikatorer

URN: urn:nbn:se:kth:diva-239468DOI: 10.1016/j.automatica.2018.09.004ISI: 000449310900005Scopus ID: 2-s2.0-8505380717OAI: oai:DiVA.org:kth-239468DiVA, id: diva2:1265787
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt611",{id:"formSmash:j_idt611",widgetVar:"widget_formSmash_j_idt611",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt625",{id:"formSmash:j_idt625",widgetVar:"widget_formSmash_j_idt625",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt640",{id:"formSmash:j_idt640",widgetVar:"widget_formSmash_j_idt640",multiple:true});
##### Merknad

##### Inngår i avhandling

In this paper, a projected primal-dual gradient flow of augmented Lagrangian is presented to solve convex optimization problems that are not necessarily strictly convex. The optimization variables are restricted by a convex set with computable projection operation on its tangent cone as well as equality constraints. As a supplement of the analysis in Niederlander and Cortes (2016), we show that the projected dynamical system converges to one of the saddle points and hence finding an optimal solution. Moreover, the problem of distributedly maximizing the algebraic connectivity of an undirected network by optimizing the port gains of each nodes (base stations) is considered. The original semi-definite programming (SDP) problem is relaxed into a nonlinear programming (NP) problem that will be solved by the aforementioned projected dynamical system. Numerical examples show the convergence of the aforementioned algorithm to one of the optimal solutions. The effect of the relaxation is illustrated empirically with numerical examples. A methodology is presented so that the number of iterations needed to reach the equilibrium is suppressed. Complexity per iteration of the algorithm is illustrated with numerical examples.

QC 20181126

Tilgjengelig fra: 2018-11-26 Laget: 2018-11-26 Sist oppdatert: 2019-01-21bibliografisk kontrollert1. Optimizing Networked Systems and Inverse Optimal Control$(function(){PrimeFaces.cw("OverlayPanel","overlay1280925",{id:"formSmash:j_idt998:0:j_idt1002",widgetVar:"overlay1280925",target:"formSmash:j_idt998:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1915",{id:"formSmash:j_idt1915",widgetVar:"widget_formSmash_j_idt1915",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

RefereraExportera$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1968",{id:"formSmash:lower:j_idt1968",widgetVar:"widget_formSmash_lower_j_idt1968",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1969_j_idt1971",{id:"formSmash:lower:j_idt1969:j_idt1971",widgetVar:"widget_formSmash_lower_j_idt1969_j_idt1971",target:"formSmash:lower:j_idt1969:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});