Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optimizing Time-Spectral Solution of Initial-Value Problems
KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.ORCID-id: 0000-0001-6379-1880
KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.ORCID-id: 0000-0003-0160-4060
2018 (engelsk)Inngår i: American Journal of Computational Mathematics, ISSN 2161-1203, E-ISSN 2161-1211, Vol. 8, nr 1, s. 7-26, artikkel-id 82900Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Time-spectral solution of ordinary and partial differential equations is often regarded as an inefficient approach. The associated extension of the time domain, as compared to finite difference methods, is believed to result in uncomfortably many numerical operations and high memory requirements. It is shown in this work that performance is substantially enhanced by the introduction of algorithms for temporal and spatial subdomains in combination with sparse matrix methods. The accuracy and efficiency of the recently developed time spectral, generalized weighted residual method (GWRM) are compared to that of the explicit Lax-Wendroff and implicit Crank-Nicolson methods. Three initial-value PDEs are employed as model problems; the 1D Burger equation, a forced 1D wave equation and a coupled system of 14 linearized ideal magnetohydrodynamic (MHD) equations. It is found that the GWRM is more efficient than the time-stepping methods at high accuracies. The advantageous scalings Nt**1.0*Ns**1.43 and Nt**0.0*Ns**1.08 were obtained for CPU time and memory requirements, respectively, with Nt and Ns denoting the number of temporal and spatial subdomains. For time-averaged solution of the two-time-scales forced wave equation, GWRM performance exceeds that of the finite difference methods by an order of magnitude both in terms of CPU time and memory requirement. Favorable subdomain scaling is demonstrated for the MHD equations, indicating a potential for efficient solution of advanced initial-value problems in, for example, fluid mechanics and MHD. 

sted, utgiver, år, opplag, sider
2018. Vol. 8, nr 1, s. 7-26, artikkel-id 82900
Emneord [en]
Time-Spectral, Spectral Method, GWRM, Chebyshev Polynomial, Initial-Value, Fluid Mechanics, MHD
HSV kategori
Forskningsprogram
Fysik
Identifikatorer
URN: urn:nbn:se:kth:diva-240679DOI: 10.4236/ajcm.2018.81002OAI: oai:DiVA.org:kth-240679DiVA, id: diva2:1274758
Merknad

QC 20190212

Tilgjengelig fra: 2019-01-02 Laget: 2019-01-02 Sist oppdatert: 2019-02-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Scheffel, JanLindvall, Kristoffer
Av organisasjonen
I samme tidsskrift
American Journal of Computational Mathematics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 79 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf