Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Infrastructure upgrade framework for Content Delivery Networks robust to targeted attacks
KTH, Skolan för elektroteknik och datavetenskap (EECS), Kommunikationssystem, CoS, Optical Network Laboratory (ON Lab).
Valparaiso Univ, Comp & Informat Sci Dept, Indiana, PA USA..
KTH, Skolan för elektroteknik och datavetenskap (EECS), Kommunikationssystem, CoS, Optical Network Laboratory (ON Lab).ORCID-id: 0000-0001-6704-6554
KTH, Skolan för elektroteknik och datavetenskap (EECS), Kommunikationssystem, CoS, Optical Network Laboratory (ON Lab).ORCID-id: 0000-0001-5600-3700
2019 (engelsk)Inngår i: Optical Switching and Networkning Journal, ISSN 1573-4277, E-ISSN 1872-9770, Vol. 31, s. 202-210Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Content Delivery Networks (CDNs) are crucial for enabling delivery of services that require high capacity and low latency, primarily through geographically-diverse content replication. Optical networks are the only available future-proof technology that meets the reach and capacity requirements of CDNs. However, the underlying physical network infrastructure is vulnerable to various security threats, and the increasing importance of CDNs in supporting vital services intensifies the concerns related to their robustness. Malicious attackers can target critical network elements, thus severely degrading network connectivity and causing large-scale service disruptions. One way in which network operators and cloud computing providers can increase the robustness against malicious attacks is by changing the topological properties of the network through infrastructure upgrades. This work proposes a framework for CDN infrastructure upgrade that performs sparse link and replica addition with the objective of maximizing the content accessibility under targeted link cut attacks. The framework is based on a newly defined content accessibility metric denoted as mu-ACA which allows the network operator to gauge the CDN robustness over a range of attacks with varying intensity. Two heuristics, namely Content-Accessibility Aware Link Addition Heuristic (CAA-LAH), and Content-Accessibility-Aware Replica Addition Heuristic (CAA-RAH) are developed to perform strategic link and replica placement, respectively, and hamper attackers from disconnecting users from the content even in severe attack scenarios. Extensive experiments on real-world reference network topologies show that the proposed framework effectively increases the CDN robustness by adding a few links or replicas to the network.

sted, utgiver, år, opplag, sider
ELSEVIER SCIENCE BV , 2019. Vol. 31, s. 202-210
Emneord [en]
Content delivery networks, Content replica addition, Infrastructure upgrade, Link addition, Network robustness, Optical networks, Targeted attacks
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-241189DOI: 10.1016/j.osn.2018.10.006ISI: 000454380100017Scopus ID: 2-s2.0-85056237720OAI: oai:DiVA.org:kth-241189DiVA, id: diva2:1281089
Merknad

QC 20190121

Tilgjengelig fra: 2019-01-21 Laget: 2019-01-21 Sist oppdatert: 2019-01-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Natalino, CarlosWosinska, LenaFurdek, Marija

Søk i DiVA

Av forfatter/redaktør
Natalino, CarlosWosinska, LenaFurdek, Marija
Av organisasjonen
I samme tidsskrift
Optical Switching and Networkning Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 119 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf