Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
COMBINED MODELING OF SPARSE AND DENSE NOISE IMPROVES BAYESIAN RVM
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre. KTH, Skolan för elektro- och systemteknik (EES).ORCID-id: 0000-0001-6992-5771
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre. KTH, Skolan för elektro- och systemteknik (EES).ORCID-id: 0000-0003-2638-6047
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre. KTH, Skolan för elektro- och systemteknik (EES).ORCID-id: 0000-0002-6855-5868
2014 (engelsk)Inngår i: 2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), IEEE , 2014, s. 1841-1845Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Using a Bayesian approach, we consider the problem of recovering sparse signals under additive sparse and dense noise. Typically, sparse noise models outliers, impulse bursts or data loss. To handle sparse noise, existing methods simultaneously estimate sparse noise and sparse signal of interest. For estimating the sparse signal, without estimating the sparse noise, we construct a Relevance Vector Machine (RVM). In the RVM, sparse noise and ever present dense noise are treated through a combined noise model. Through simulations, we show the efficiency of new RVM for three applications: kernel regression, housing price prediction and compressed sensing.

sted, utgiver, år, opplag, sider
IEEE , 2014. s. 1841-1845
Serie
European Signal Processing Conference, ISSN 2076-1465
Emneord [en]
Robust regression, Bayesian learning, Relevance vector machine, Compressed sensing
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-243801ISI: 000393420200370ISBN: 978-0-9928626-1-9 (tryckt)OAI: oai:DiVA.org:kth-243801DiVA, id: diva2:1286372
Konferanse
22nd European Signal Processing Conference (EUSIPCO), SEP 01-05, 2014, Lisbon, PORTUGAL
Merknad

QC 20190206

Tilgjengelig fra: 2019-02-06 Laget: 2019-02-06 Sist oppdatert: 2019-08-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Sundin, MartinChatterjee, SaikatJansson, Magnus

Søk i DiVA

Av forfatter/redaktør
Sundin, MartinChatterjee, SaikatJansson, Magnus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 53 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf