Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Impedance Spectroscopy Based on Linear System Identification
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik, Integrerade komponenter och kretsar.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik, Integrerade komponenter och kretsar.ORCID-id: 0000-0003-0565-9907
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik, Integrerade komponenter och kretsar.ORCID-id: 0000-0003-3802-7834
2019 (engelsk)Inngår i: IEEE Transactions on Biomedical Circuits and Systems, ISSN 1932-4545, E-ISSN 1940-9990, Vol. 13, nr 2, s. 396-402Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Impedance spectroscopy is a commonly used mea-surement technique for electrical characterization of a sample-under-test over a wide frequency range. Most measurementmethods employ a sine wave excitation generator, which implies apoint-by-point frequency sweep and a complex readout architec-ture. This paper presents a fast, wide-band, measurement methodfor impedance spectroscopy based on linear system identification.The main advantage of the proposed method is the low hardwarecomplexity, which consists of a 3-level pulse waveform, aninverting voltage amplifier and a general purpose ADC. A proof-of-concept prototype, which is implemented with off-the-shelfcomponents, achieves an estimation fit of approximately 96%.The prototype operation is validated electrically using knownRC component values and tested in real application conditions.

sted, utgiver, år, opplag, sider
IEEE, 2019. Vol. 13, nr 2, s. 396-402
Emneord [en]
Impedance spectroscopy, system identification, adaptive filtering, pseudo-random waveform, IIR filter, ARX.
HSV kategori
Forskningsprogram
Elektro- och systemteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-244757DOI: 10.1109/TBCAS.2019.2900584ISI: 000462410800012PubMedID: 30794518Scopus ID: 2-s2.0-85061964097OAI: oai:DiVA.org:kth-244757DiVA, id: diva2:1291356
Forskningsfinansiär
Swedish Research Council
Merknad

QC 20190301

Tilgjengelig fra: 2019-02-25 Laget: 2019-02-25 Sist oppdatert: 2019-04-23bibliografisk kontrollert
Inngår i avhandling
1. Circuit Design Techniques for Implantable Closed-Loop Neural Interfaces
Åpne denne publikasjonen i ny fane eller vindu >>Circuit Design Techniques for Implantable Closed-Loop Neural Interfaces
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Implantable neural interfaces are microelectronic systems, which have the potential to enable a wide range of applications, such as diagnosis and treatment of neurological disorders. These applications depend on neural interfaces to accurately record electrical activity from the surface of the brain, referred to as electrocorticography (ECoG), and provide controlled electrical stimulation as feedback. Since the electrical activity in the brain is caused by ionic currents in neurons, the bridge between living tissue and inorganic electronics is achieved via microelectrode arrays. The conversion of the ionic charge into freely moving electrons creates a built-in electrode potential that is several orders of magnitude larger than the ECoG signal, which increases the dynamic range, resolution, and power consumption requirements of neural interfaces. Also, the small surface area of microelectrodes implies a high-impedance contact, which can attenuate the ECoG signal. Moreover, the applied electrical stimulation can also interfere with the recording and ultimately cause irreversible damages to the electrodes or change their impedance. This thesis is devoted to resolving the challenges of high-resolution recording and monitoring the electrode impedance in implantable neural interfaces.

The first part of this thesis investigates the state-of-the-art neural interfaces for ECoG and identifies their limitations. As a result of the investigation, a high-resolution ADC is proposed and implemented based on a ΔΣ modulator. In order to enhance performance, dynamic biasing and area-efficient switched-capacitor circuits were proposed. The ΔΣ modulator is combined with the analog front-end to provide a complete readout solution for high-resolution ECoG recording. The corresponding chip prototype was fabricated in a 180 nm CMOS process, and the measurement results showed a 14-ENOB over a 300-Hz bandwidth while dissipating 54-μW.

The second part of this thesis expands upon the well-known methods for impedance measurements and proposes an alternative digital method for monitoring the electrode-tissue interface impedance. The proposed method is based on the system identification technique from adaptive digital filtering, and it is compatible with existing circuitry for neural stimulation. The method is simple to implement and performs wide-band measurements. The system identification was first verified through behavioral simulations and then tested with a board-level prototype in order to validate the functionality under real conditions. The measurement results showed successful identification of the electrode-electrolyte and electrode-skin impedance magnitudes.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2019. s. 72
Serie
TRITA-EECS-AVL ; 2019:33
Emneord
Neural interface, ECoG, high-resolution, ADC, recording, delta-sigma modulator, system identification, impedance measurements
HSV kategori
Forskningsprogram
Informations- och kommunikationsteknik
Identifikatorer
urn:nbn:se:kth:diva-249435 (URN)978-91-7873-151-0 (ISBN)
Disputas
2019-05-17, Ka-Sal B (Sal Peter Weissglas), Kistagången 16,, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish Research CouncilSwedish Foundation for Strategic Research
Merknad

QC 20190412

Tilgjengelig fra: 2019-04-12 Laget: 2019-04-12 Sist oppdatert: 2019-04-12bibliografisk kontrollert

Open Access i DiVA

fulltext(16736 kB)75 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 16736 kBChecksum SHA-512
b2ac970a2f44873dee7ad7148f06fdff568f19184d49d9a68ee79816ece5ba888c5a8510cd9392e7635412015e7963d5bf1874f0676c09a7aa0f9cb14ff9e36e
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopushttps://ieeexplore.ieee.org/document/8645649

Personposter BETA

Ivanisevic, NikolaRodriguez, SaulRusu, Ana

Søk i DiVA

Av forfatter/redaktør
Ivanisevic, NikolaRodriguez, SaulRusu, Ana
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Biomedical Circuits and Systems

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 75 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 229 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf