Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A big data analytics based machining optimisation approach
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion.ORCID-id: 0000-0002-9642-6983
Harbin Univ Sci & Technol, Dept Mech Engn, Harbin, Heilongjiang, Peoples R China..
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion.ORCID-id: 0000-0001-8679-8049
2019 (engelsk)Inngår i: Journal of Intelligent Manufacturing, ISSN 0956-5515, E-ISSN 1572-8145, Vol. 30, nr 3, s. 1483-1495Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Currently, machine tool selection, cutting tool selection and machining conditions determination are not usually performed at the same time but progressively, which may lead to suboptimal or trade-off solutions. Targeting this issue, this paper proposes a big data analytics based optimisation method for enriched Distributed Process Planning by considering machine tool selection, cutting tool selection and machining conditions determination simultaneously. Within the context, the machining resources are represented by data attributes, i.e. workpiece, machining requirement, machine tool, cutting tool, machine conditions, machining process and machining result. Consequently, the problem of machining optimisation can be treated as a statistic problem and solved by a hybrid algorithm. Regarding the algorithm, artificial neural networks based models are trained by machining data and used as optimisation objectives, whereas analytical hierarchy process is adopted to decide the weights of the multi-objective optimisation; and evolutionary algorithm or swarm intelligence is proposed to perform the optimisation. Finally, the results of a simplified proof-of-concept case study are reported to validate the proposed approach, where a Deep Belief Network model was trained by a set of hypothetic data and used to calculate the fitness of a genetic algorithm.

sted, utgiver, år, opplag, sider
SPRINGER , 2019. Vol. 30, nr 3, s. 1483-1495
Emneord [en]
Big data analytics, Machining optimisation, Hybrid algorithm, Deep belief network, Genetic algorithm
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-246246DOI: 10.1007/s10845-018-1440-9ISI: 000459423700032Scopus ID: 2-s2.0-85050695013OAI: oai:DiVA.org:kth-246246DiVA, id: diva2:1302069
Merknad

QC 20190403

Tilgjengelig fra: 2019-04-03 Laget: 2019-04-03 Sist oppdatert: 2019-06-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Ji, WeiWang, Lihui

Søk i DiVA

Av forfatter/redaktør
Ji, WeiWang, Lihui
Av organisasjonen
I samme tidsskrift
Journal of Intelligent Manufacturing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 246 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf