Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Parameter bias in misspecified Hybrid Choice Models: An empirical study.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Systemanalys och ekonomi.ORCID-id: 0000-0003-4512-9054
2018 (engelsk)Inngår i: Transportation Research Procedia, Elsevier B.V. , 2018, s. 99-106Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Model misspecification is likely to occur when working with real datasets. However, previous studies showing the advantages of hybrid choice models have mostly used models where structural and measurement equations match the functions employed in the data generating process, especially when parameter biases were discussed. The aim of this study is to investigate the extent of parameter bias in misspecified hybrid choice models, and assess if different modelling assumptions impact the parameter estimates of the choice model. For this task, a mode choice model is estimated on synthetic data with efforts focus on mimicking the conditions present in real datasets, where the postulated structural and measurement equations are less flexible than the functions used to generate the data. Results show that hybrid choice models, even if misspecified, manage to recover better parameter estimates than a multinomial logit. However, hybrid choice models are not unbeatable, as results also indicate that misspecified hybrid choice models might still yield biased parameter estimates. Moreover, results suggest that hybrid choice models successfully isolate the source of model bias, preventing its propagation to other parameter estimates. Results also show that parameter estimates from hybrid choice models are sensible to modelling assumptions, and that parameter estimates of the utility function are robust given that errors are modelled.

sted, utgiver, år, opplag, sider
Elsevier B.V. , 2018. s. 99-106
Emneord [en]
Hybrid Choice Models (HCM), Integrated Choice, Latent Variable models (ICLV), Latent variables, Mode choice, Model misspecification, Parameter bias, Synthetic dataset
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-247474DOI: 10.1016/j.trpro.2018.10.081Scopus ID: 2-s2.0-85057150519OAI: oai:DiVA.org:kth-247474DiVA, id: diva2:1302581
Konferanse
13th Conference on Transport Engineering, CIT 2018, 6 June 2018 through 8 June 2018
Merknad

QC20190405

Tilgjengelig fra: 2019-04-05 Laget: 2019-04-05 Sist oppdatert: 2019-04-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Lorenzo Varela, Juan Manuel

Søk i DiVA

Av forfatter/redaktør
Lorenzo Varela, Juan Manuel
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 133 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf