Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards holistic energy-efficient vehicle product system design: The case for a penalized continuous end-of-life model in the life cycle energy optimisation methodology
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellence Center for ECO2 Vehicle design.ORCID-id: 0000-0002-1848-7924
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellence Center for ECO2 Vehicle design. (Conceptual Vehicle Design)ORCID-id: 0000-0003-0176-5358
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellence Center for ECO2 Vehicle design.ORCID-id: 0000-0003-1855-5437
KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellence Center for ECO2 Vehicle design. University of Graz, Institute of Systems Sciences Innovation & Sustainability Research, Austria.ORCID-id: 0000-0002-4273-9490
Vise andre og tillknytning
2019 (engelsk)Inngår i: 22nd International Conference on Engineering Design, ICED19, Cambridge University Press, 2019, Vol. 1, s. 2901-2910Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The Life Cycle Energy Optimisation (LCEO) methodology aims at finding a design solution that uses a minimum amount of cumulative energy demand over the different phases of the vehicle's life cycle, while complying with a set of functional constraints. This effectively balances trade-offs, and therewith avoids sub-optimal shifting between the energy demand for the cradle-to-production of materials, operation of the vehicle, and end-of-life phases. The present work describes the extension of the LCEO methodology to perform holistic product system optimisation. The constrained design of an automotive component and the design of a subset of the processes which are applied to it during its life cycle are simultaneously optimised to achieve a minimal product system life cycle energy. A subset of the processes of the end-of-life phase of a vehicle’s roof are modelled through a continuous formulation. The roof is modelled as a sandwich structure with its design variables being the material compositions and the thicknesses of the different layers. The results show the applicability of the LCEO methodology to product system design and the use of penalisation to ensure solution feasibility.

sted, utgiver, år, opplag, sider
Cambridge University Press, 2019. Vol. 1, s. 2901-2910
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-248606DOI: 10.1017/dsi.2019.297OAI: oai:DiVA.org:kth-248606DiVA, id: diva2:1303443
Konferanse
22nd International Conference on Engineering Design, ICED19
Merknad

QC 20190617

Tilgjengelig fra: 2019-04-09 Laget: 2019-04-09 Sist oppdatert: 2019-08-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstConference webpageArticle webpage

Søk i DiVA

Av forfatter/redaktør
Bouchouireb, HamzaO'Reilly, Ciarán J.Göransson, PeterSchöggl, Josef-PeterBaumgartner, Rupert J.Potting, José
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 387 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf