Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
ABRF Proteome Informatics Research Group (iPRG) 2016 Study: Inferring Proteoforms from Bottom-up Proteomics Data
Vise andre og tillknytning
2018 (engelsk)Inngår i: Journal of biomolecular techniques : JBT, ISSN 1943-4731, Vol. 29, nr 2, s. 39-45Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This report presents the results from the 2016 Association of Biomolecular Resource Facilities Proteome Informatics Research Group (iPRG) study on proteoform inference and false discovery rate (FDR) estimation from bottom-up proteomics data. For this study, 3 replicate Q Exactive Orbitrap liquid chromatography-tandom mass spectrometry datasets were generated from each of 4 Escherichia coli samples spiked with different equimolar mixtures of small recombinant proteins selected to mimic pairs of homologous proteins. Participants were given raw data and a sequence file and asked to identify the proteins and provide estimates on the FDR at the proteoform level. As part of this study, we tested a new submission system with a format validator running on a virtual private server (VPS) and allowed methods to be provided as executable R Markdown or IPython Notebooks. The task was perceived as difficult, and only eight unique submissions were received, although those who participated did well with no one method performing best on all samples. However, none of the submissions included a complete Markdown or Notebook, even though examples were provided. Future iPRG studies need to be more successful in promoting and encouraging participation. The VPS and submission validator easily scale to much larger numbers of participants in these types of studies. The unique "ground-truth" dataset for proteoform identification generated for this study is now available to the research community, as are the server-side scripts for validating and managing submissions.

sted, utgiver, år, opplag, sider
NLM (Medline) , 2018. Vol. 29, nr 2, s. 39-45
Emneord [en]
best practice, community study, false discovery rate, inference
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-247210DOI: 10.7171/jbt.18-2902-003Scopus ID: 2-s2.0-85059915162OAI: oai:DiVA.org:kth-247210DiVA, id: diva2:1304984
Merknad

QC 20190415

Tilgjengelig fra: 2019-04-15 Laget: 2019-04-15 Sist oppdatert: 2019-04-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Käll, LukasThe, Matthew

Søk i DiVA

Av forfatter/redaktør
Käll, LukasThe, Matthew
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 163 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf