Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modelling and optimization of a small diesel burner for mobile applications
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Processteknologi.
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Processteknologi.
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Processteknologi.ORCID-id: 0000-0002-6326-4084
2018 (engelsk)Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 11, nr 11, artikkel-id 2904Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

While extensive research has been done on improving diesel engines, much less has been done on auxiliary heaters, which have their own design challenges. The study analyzes how to optimize the combustion performance of an auxiliary heater, a 6 kW diesel burner, by investigating key parameters affecting diesel combustion and their properties. A model of a small diesel heater, including a simulation of fuel injection and combustion process, was developed step-wise and verified against experimental results that can be used for scaling up to 25 kW heaters. The model was successfully applied to the burner, predicting the burner performance in comparison with experimental results. Three main variables were identified as important for the design. First, it was concluded that the distance from the ring cone to the nozzle is essential for the fluid dynamics and flame location, and that the ring cone should be moved closer to the nozzle for optimal performance. Second, the design of the swirl co-flow is important, and the swirl number of the inlet air should be kept above 0.6 to stabilize the flame location for the present burner design. Finally, the importance of the nozzle diameter to avoid divergent particle vaporization was pointed out.

sted, utgiver, år, opplag, sider
MDPI AG , 2018. Vol. 11, nr 11, artikkel-id 2904
Emneord [en]
CFD modelling, Design optimization, Diesel combustion, NOx emission, Nozzle diameter, Swirl number, Combustion, Computational fluid dynamics, Nozzle design, Nozzles, NOx emissions, Swirl numbers, Diesel engines
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-247085DOI: 10.3390/en11112904ISI: 000451814000042Scopus ID: 2-s2.0-85057841817OAI: oai:DiVA.org:kth-247085DiVA, id: diva2:1313432
Merknad

QC 20190503

Tilgjengelig fra: 2019-05-03 Laget: 2019-05-03 Sist oppdatert: 2019-05-03bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Musavi, ZariKusar, HenrikEngvall, Klas

Søk i DiVA

Av forfatter/redaktør
Musavi, ZariKusar, HenrikEngvall, Klas
Av organisasjonen
I samme tidsskrift
Energies

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 73 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf