Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Parametric Identification Using Weighted Null-Space Fitting
KTH, Skolan för elektroteknik och datavetenskap (EECS), Reglerteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Reglerteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0003-0355-2663
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre. KTH, Skolan för elektroteknik och datavetenskap (EECS), Reglerteknik.ORCID-id: 0000-0002-9368-3079
2019 (engelsk)Inngår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 64, nr 7, s. 2798-2813Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In identification of dynamical systems, the prediction error method with a quadratic cost function provides asymptotically efficient estimates under Gaussian noise, but in general it requires solving a nonconvex optimization problem, which may imply convergence to nonglobal minima. An alternative class of methods uses a nonparametric model as intermediate step to obtain the model of interest. Weighted null-space fitting (WNSF) belongs to this class, starting with the estimate of a nonparametric ARX model with least squares. Then, the reduction to a parametric model is a multistep procedure where each step consists of the solution of a quadratic optimization problem, which can be obtained with weighted least squares. The method is suitable for both open- and closed-loop data, and can be applied to many common parametric model structures, including output-error, ARMAX, and Box-Jenkins. The price to pay is the increase of dimensionality in the nonparametric model, which needs to tend to infinity as function of the sample size for certain asymptotic statistical properties to hold. In this paper, we conduct a rigorous analysis of these properties: namely, consistency, and asymptotic efficiency. Also, we perform a simulation study illustrating the performance of WNSF and identify scenarios where it can be particularly advantageous compared with state-of-the-art methods.

sted, utgiver, år, opplag, sider
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC , 2019. Vol. 64, nr 7, s. 2798-2813
Emneord [en]
Least squares, system identification
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-255416DOI: 10.1109/TAC.2018.2877673ISI: 000473489700011Scopus ID: 2-s2.0-85055726363OAI: oai:DiVA.org:kth-255416DiVA, id: diva2:1343065
Merknad

QC 20190815

Tilgjengelig fra: 2019-08-15 Laget: 2019-08-15 Sist oppdatert: 2019-10-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Galrinho, MiguelRojas, Cristian R.Hjalmarsson, Håkan

Søk i DiVA

Av forfatter/redaktør
Galrinho, MiguelRojas, Cristian R.Hjalmarsson, Håkan
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Automatic Control

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 106 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf