Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluating precipitation datasets for large-scale distributed hydrological modelling
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik.
2019 (engelsk)Inngår i: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 578Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We are experiencing a proliferation of satellite derived precipitation datasets. Advantages and limitations of their promising application in hydrological modelling application have been broadly investigated. However, most studies have analysed only the performance of one or few datasets, were limited to selected small-scale case studies or used lumped models when investigating large-scale basins.

In this study, we compared the performance of 18 different precipitation datasets when used as main forcing in a grid-based distributed hydrological model to assess streamflow in medium to large-scale river basins. These datasets are classified as Uncorrected Satellites (Class 1), Corrected Satellites (Class 2) and Reanalysis – Gauges based datasets (Class 3). To provide a broad-based analysis, 8 large-scale river basins (Amazon, Brahmaputra, Congo, Danube, Godavari, Mississippi, Rhine and Volga) having different sizes, hydrometeorological characteristics, and human influence were selected. The distributed hydrological model was recalibrated for each precipitation dataset individually.

We found that there is not a unique best performing precipitation dataset for all basins and that results are very sensitive to the basin characteristics. However, a few datasets persistently outperform the others: SM2RAIN-ASCAT for Class 1, CHIRPS V2.0, MSWEP V2.1, and CMORPH-CRTV1.0 for Class 2, GPCC and WFEDEI GPCC for Class 3. Surprisingly, precipitation datasets showing the highest model accuracy at basin outlets do not show the same high performance in internal locations, supporting the use of distributed modelling approach rather than lumped.

sted, utgiver, år, opplag, sider
2019. Vol. 578
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-256544DOI: 10.1016/j.jhydrol.2019.124076Scopus ID: 2-s2.0-85071308400OAI: oai:DiVA.org:kth-256544DiVA, id: diva2:1346454
Merknad

QC 20190829

Tilgjengelig fra: 2019-08-28 Laget: 2019-08-28 Sist oppdatert: 2019-10-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Brandimarte, Luigia

Søk i DiVA

Av forfatter/redaktør
Brandimarte, Luigia
Av organisasjonen
I samme tidsskrift
Journal of Hydrology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 10 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf