Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Toward FPGA Security in IoT: A New Detection Technique for Hardware Trojans
Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Sichuan, Peoples R China..
Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Sichuan, Peoples R China..
Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Sichuan, Peoples R China..
Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Sichuan, Peoples R China..
Vise andre og tillknytning
2019 (engelsk)Inngår i: IEEE Internet of Things Journal, ISSN 2327-4662, Vol. 6, nr 4, s. 7061-7068Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Nowadays, field programmable gate array (FPGA) has been widely used in Internet of Things (IoT) since it can provide flexible and scalable solutions to various IoT requirements. Meanwhile, hardware Trojan (HT), which may lead to undesired chip function or leak sensitive information, has become a great challenge for FPGA security. Therefore, distinguishing the Trojan-infected FPGAs is quite crucial for reinforcing the security of IoT. To achieve this goal, we propose a clock-tree-concerned technique to detect the HTs on FPGA. First, we present an experimental framework which helps us to collect the electromagnetic (EM) radiation emitted by FPGA clock tree. Then, we propose a Trojan identifying approach which extracts the mathematical feature of obtained EM traces, i.e., 2-D principal component analysis (2DPCA) in this paper, and automatically isolates the Trojan-infected FPGAs from the Trojan-free ones by using a BP neural network. Finally, we perform extensive experiments to evaluate the effectiveness of our method. The results reveal that our approach is valid in detecting HTs on FPGA. Specifically, for the trust-hub benchmarks, we can find out the FPGA with always on Trojans (100% detection rate) while identifying the triggered Trojans with high probability (by up to 92%). In addition, we give a thorough discussion on how the experimental setup, such as probe step size, scanning area, and chip ambient temperature, affects the Trojan detection rate.

sted, utgiver, år, opplag, sider
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC , 2019. Vol. 6, nr 4, s. 7061-7068
Emneord [en]
Electromagnetic (EM) side channel, field programmable gate array (FPGA), hardware Trojan (HT) detection, Internet of Things (IoT) security
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-257568DOI: 10.1109/JIOT.2019.2914079ISI: 000478957600108Scopus ID: 2-s2.0-85070241350OAI: oai:DiVA.org:kth-257568DiVA, id: diva2:1353475
Merknad

QC 20190923

Tilgjengelig fra: 2019-09-23 Laget: 2019-09-23 Sist oppdatert: 2019-10-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Lu, Zhonghai

Søk i DiVA

Av forfatter/redaktør
Lu, Zhonghai
Av organisasjonen
I samme tidsskrift
IEEE Internet of Things Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 55 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf