Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Thermal energy storage in combined cycle power plants: Comparing finite volume to finite element methods
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.ORCID-id: 0000-0001-6982-2879
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
2019 (engelsk)Inngår i: E3S Web of Conferences: SUPEHR19 Sustainable PolyEnergy generation and Harvesting, EDP Sciences, 2019, Vol. 113Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The research in thermal energy storage (TES) systems has a long track record. However, there are several technical challenges that need to be overcome, to become omnipresent and reach their full potential. These include performance, physical size, weight and dynamic response. In many cases, it is also necessary to be able to achieve the foregoing at greater and greater scale, in terms of power and energy. One of the applications in which these challenges prevail is in the integration of a thermal energy storage with the gas turbine (GT) compressor inlet conditioning system in a combined cycle power plant. The system is intended to provide either GT cooling or heating, based on the operational strategy of the plant. As a contribution to tackle the preceding, this article describes a series of 3-dimensional (3D) numerical simulations, employing different Computational Fluid Dynamics (CFD) methods, to study the transient effects of inlet temperature and flow rate variation on the performance of an encapsulated TES with phase change materials (PCM). A sensitivity analysis is performed where the heat transfer fluid (HTF) temperature varies from -7°C to 20°C depending on the operating mode of the TES (charging or discharging). The flow rate ranges from 50% to 200% of the nominal inflow rate. Results show that all examined cases lead to instant thermal power above 100kWth. Moreover, increasing the flow rate leads to faster solidification and melting. The increment in each process depends on the driving temperature difference between the encapsulated PCM and the HTF inlet temperature. Lastly, the effect of the inlet temperature has a larger effect as compared to the mass flow rate on the efficiency of the heat transfer of the system.

sted, utgiver, år, opplag, sider
EDP Sciences, 2019. Vol. 113
Serie
E3S Web of Conferences, ISSN 2555-0403 ; 113
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-262519DOI: 10.1051/e3sconf/201911301001Scopus ID: 2-s2.0-85071850599OAI: oai:DiVA.org:kth-262519DiVA, id: diva2:1362292
Konferanse
2019 SUstainable PolyEnergy Generation and HaRvesting, SUPEHR 2019; Savona; Italy; 4 September 2019 through 6 September 2019
Merknad

QC 20191018

Tilgjengelig fra: 2019-10-18 Laget: 2019-10-18 Sist oppdatert: 2019-10-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Martin, Guillaume

Søk i DiVA

Av forfatter/redaktør
Chiu, Justin Ning WeiMartin, Guillaume
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 4 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf