Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Wax in bitumen: Part II: Characterization and Effects
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Väg- och banteknik.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Väg- och banteknik.
2005 (engelsk)Inngår i: International Journal on Road Materials and Pavement Design, ISSN 1468-0629, E-ISSN 2164-7402, Vol. 6, nr 4, s. 439-468Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A large number of different methods for isolating and characterizing wax in bitumen, as well as for determination of wax content, have been used over the years. The methods used for determining wax content all give different results for one and the same bitumen, which has caused problems for many years. Through different types of phase transition, wax in bitumen influences bitumen properties to a larger or minor extent. In some cases, such an influence may give rise to negative effects like increased sensitivity to cracking or plastic deformation in asphalt concrete pavements. In other cases, wax may even show positive effects on bitumen, such as increased stiffness at higher temperatures, leading to improved resistance to rutting. This paper is the second of two companion papers discussing the field of knowledge concerning wax in bitumen. In the first paper, classifications and general aspects on effects of wax in crude oil and bitumen are described.

sted, utgiver, år, opplag, sider
2005. Vol. 6, nr 4, s. 439-468
Emneord [en]
bitumen wax, state-of-the-art, rheology, test methods
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-8926DOI: 10.3166/rmpd.6.439-468ISI: 000233545600001Scopus ID: 2-s2.0-33845664581OAI: oai:DiVA.org:kth-8926DiVA, id: diva2:14413
Merknad
QC 20101006. Uppdaterad från in press till published (20101006).Tilgjengelig fra: 2005-01-08 Laget: 2005-01-08 Sist oppdatert: 2017-12-14bibliografisk kontrollert
Inngår i avhandling
1. Influence of waxes on bitumen and asphalt concrete mixture performance
Åpne denne publikasjonen i ny fane eller vindu >>Influence of waxes on bitumen and asphalt concrete mixture performance
2005 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This doctoral thesis consists of a literature review, presented in two papers, and another six papers describing experimental studies of the influence of different kinds of wax and polyphosporic acid on bitumen and asphalt concrete mixture properties.

The literature review should give an extensive description of the field of knowledge concerning wax in bitumen. Effects of wax in crude oil, bitumen and asphalt concrete as well as test methods for studying these effects are described. Theories behind possible mechanisms are also discussed, and commercial wax as additive to bitumen for different purposes included.

The experimental parts comprise laboratory studies involving totally five 160/220 penetration base bitumens from different sources, two isolated bitumen waxes, five commercial waxes and one polyphosphoric acid. Asphalt concrete slabs, containing base or modified bitumen were prepared and tested. Binder properties were evaluated using different types of laboratory equipment, such as dynamic shear rheometer (DSR), bending beam rheometer (BBR), differential scanning calorimeter (DSC), force ductilometer, as well as equipment for determining conventional parameters like penetration, softening point, viscosity, and Fraass breaking point. Fourier Transform Infrared (FTIR) spectroscopy and Thin Layer Chromatography (TLC-FID) were used for chemical characterization. The binders were aged by means of the rolling thin film oven test (RTFOT) and pressure ageing vessel (PAV) in combination. Asphalt concrete properties were evaluated at low temperatures using the tensile strain restrained specimen test (TSRST) and creep test at -25°C. Dynamic creep testing was performed at 40°C, as well as complex modulus tests between 0 and 20°C.

Binder test results indicated that the magnitude and type of effect on bitumen rheology depend on the bitumen itself, type of crystallizing fraction in the bitumen and/or type and amount of additive used. Bitumen composition was found to be of decisive importance. Adding polyethylene wax or polyphosphoric acid, especially to a non-waxy 160/220 penetration grade bitumen, showed no or positive effects on the rheological behaviour at low temperatures (decrease in stiffness) as well as medium and high temperatures (increase in complex modulus and decrease in phase angle). However, the corresponding positive effects could not be shown in dynamic creep testing (at 40°C) of asphalt concrete mixtures containing these modified binders. Adding FT-paraffin decreased the physical hardening index for all bitumens. Also polyethylene wax and montan wax showed this effect for some bitumens. Slack wax showed a large increasing effect on physical hardening, and polyphosphoric acid none or a minor negative effect. No correlation between physical hardening index (PHI) and wax content by DSC was found in this study, involving both natural bitumen wax and commercial wax.

Addition of the commercial waxes used showed no or marginally positive influence on bitumen ageing properties for the bitumens and test conditions used. Comparing asphalt mixture test results to the corresponding binder test results, the effects on asphalt mixtures from adding commercial wax or polyphosphoric acid were less evident. Significant binder physical hardening by BBR could not be confirmed by TSRST.

sted, utgiver, år, opplag, sider
Stockholm: KTH, 2005. s. iii, 48
Serie
Trita-VT. FR, ISSN 1650-867X ; 2005:1
Emneord
bitumen, asphalt, additives, wax in bitumen, polyphosphoric acid in bitumen, rheology, IR-spectroscopy, dynamic mechanic analysis (DMA), bending beam rheometer (BBR), literature study, low temperature physical hardening, highway materials, morphology, modified bitumens, temperature susceptibility, low temperature performance, ageing, microscopy, chromatography, Fourier transform infrared spectroscopy, force ductility, conventional binder tests, asphalt performance, tensile strain restrained specimen test (TSRST)
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-553 (URN)
Disputas
2005-12-16, Sal E1, Lindstedtsvägen 3, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad
QC 20101006Tilgjengelig fra: 2005-01-08 Laget: 2005-01-08 Sist oppdatert: 2010-10-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Edwards, YlvaIsacsson, Ulf
Av organisasjonen
I samme tidsskrift
International Journal on Road Materials and Pavement Design

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 702 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf