Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Online Spatiotemporal Popularity Learning via Variational Bayes for Cooperative Caching
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre. KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap.ORCID-id: 0000-0003-2638-6047
2020 (engelsk)Inngår i: IEEE Transactions on Communications, ISSN 0090-6778, E-ISSN 1558-0857, Vol. 68, nr 11, s. 7068-7082Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Herein, we focus on an end-to-end design of a proactive cooperative caching strategy for a multi-cell network. The design is challenging as it involves two interrelated problems: the ability to predict future content popularity and to meet network operation characteristics. To this end, we first formulate a cooperative content caching in order to optimize the aggregated network cost for delivering contents to users. An efficient proactive caching policy requires an accurate prediction of time-varying content popularity. Content popularity has temporal and spatial dependencies and therefore, we develop a probabilistic dynamical model for content popularity prediction by exploiting its spatiotemporal correlations. To achieve an accurate tracking and prediction of content popularity evolution, the proposed dynamical model is non-linear and incorporates non-Gaussian distributions. We use Variational Bayes (VB) approach for estimating the model parameters. The VB provides mathematical tractability. We then develop an online VB method that works with streaming data where content request arrives sequentially. Using extensive simulations study on a real-world dataset, we show that our online VB based dynamical model provides improved performance compared to conventional content caching policies.

sted, utgiver, år, opplag, sider
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC , 2020. Vol. 68, nr 11, s. 7068-7082
Emneord [en]
Predictive models, Correlation, Servers, Bayes methods, Analytical models, Spatiotemporal phenomena, Cooperative caching, Content caching, multi-cell network, popularity prediction, routing, cache placement, online variational Bayes
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-287810DOI: 10.1109/TCOMM.2020.3015478ISI: 000591819400032Scopus ID: 2-s2.0-85096663038OAI: oai:DiVA.org:kth-287810DiVA, id: diva2:1522681
Merknad

QC 20210126

Tilgjengelig fra: 2021-01-26 Laget: 2021-01-26 Sist oppdatert: 2024-03-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Chatterjee, SaikatOttersten, Bjorn

Søk i DiVA

Av forfatter/redaktør
Chatterjee, SaikatChatzinotas, SymeonOttersten, Bjorn
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Communications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 99 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf