Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Recursive Prediction of Graph Signals with Incoming Nodes
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik.ORCID-id: 0000-0003-1285-8947
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap.ORCID-id: 0000-0003-2638-6047
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik.ORCID-id: 0000-0002-1927-1690
2020 (engelsk)Inngår i: 2020 IEEE International Conference on Acoustics, Speech, And Signal Processing, Institute of Electrical and Electronics Engineers (IEEE), 2020, s. 5565-5569, artikkel-id 9053145Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Kernel and linear regression have been recently explored in the prediction of graph signals as the output, given arbitrary input signals that are agnostic to the graph. In many real-world problems, the graph expands over time as new nodes get introduced. Keeping this premise in mind, we propose a method to recursively obtain the optimal prediction or regression coefficients for the recently proposed Linear Regression over Graphs (LRG), as the graph expands with incoming nodes. This comes as a natural consequence of the structure of the regression problem, and obviates the need to solve a new regression problem each time a new node is added. Experiments with real-world graph signals show that our approach results in a good prediction performance which tends to be close to that obtained from knowing the entire graph apriori.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2020. s. 5565-5569, artikkel-id 9053145
Serie
International Conference on Acoustics Speech and Signal Processing ICASSP, ISSN 1520-6149
Emneord [en]
Linear regression, graph expansion, graph signal processing, recursive least squares, convex optimization
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-292373DOI: 10.1109/ICASSP40776.2020.9053145ISI: 000615970405165Scopus ID: 2-s2.0-85089231874OAI: oai:DiVA.org:kth-292373DiVA, id: diva2:1544734
Konferanse
2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020; Barcelona; Spain; 4 May 2020 through 8 May 2020
Merknad

QC 20210416

Tilgjengelig fra: 2021-04-16 Laget: 2021-04-16 Sist oppdatert: 2023-04-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Venkitaraman, ArunChatterjee, SaikatWahlberg, Bo

Søk i DiVA

Av forfatter/redaktør
Venkitaraman, ArunChatterjee, SaikatWahlberg, Bo
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 35 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf