Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Making sense of text: artificial intelligence-enabled content analysis
Nottingham Trent Univ, Nottingham Business Sch, Nottingham, England..
KTH, Skolan för industriell teknik och management (ITM), Industriell ekonomi och organisation (Inst.), Industriell Marknadsföring och Entreprenörskap. Calif State Univ Fullerton, Mihaylo Coll Business & Econ, Fullerton, CA 92634 USA..ORCID-id: 0000-0002-1304-5211
Simon Fraser Univ, Sch Business, Vancouver, BC, Canada.;Luiss Univ, Dept Management, Rome, Italy..
Univ Victoria, Gustavson Sch Business, Victoria, BC, Canada..
2020 (engelsk)Inngår i: European Journal of Marketing, ISSN 0309-0566, E-ISSN 1758-7123, Vol. 54, nr 3, s. 615-644Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Purpose The purpose of this paper is to introduce, apply and compare how artificial intelligence (AI), and specifically the IBM Watson system, can be used for content analysis in marketing research relative to manual and computer-aided (non-AI) approaches to content analysis. Design/methodology/approach To illustrate the use of AI-enabled content analysis, this paper examines the text of leadership speeches, content related to organizational brand. The process and results of using AI are compared to manual and computer-aided approaches by using three performance factors for content analysis: reliability, validity and efficiency. Findings Relative to manual and computer-aided approaches, AI-enabled content analysis provides clear advantages with high reliability, high validity and moderate efficiency. Research limitations/implications - This paper offers three contributions. First, it highlights the continued importance of the content analysis research method, particularly with the explosive growth of natural language-based user-generated content. Second, it provides a road map of how to use AI-enabled content analysis. Third, it applies and compares AI-enabled content analysis to manual and computer-aided, using leadership speeches. Practical implications - For each of the three approaches, nine steps are outlined and described to allow for replicability of this study. The advantages and disadvantages of using AI for content analysis are discussed. Together these are intended to motivate and guide researchers to apply and develop AI-enabled content analysis for research in marketing and other disciplines. Originality/value To the best of the authors' knowledge, this paper is among the first to introduce, apply and compare how AI can be used for content analysis.

sted, utgiver, år, opplag, sider
Emerald , 2020. Vol. 54, nr 3, s. 615-644
Emneord [en]
Marketing, Research methods, Leadership, Content analysis, Qualitative research, Artificial intelligence, Topic modeling, IBM Watson
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-300788DOI: 10.1108/EJM-02-2019-0219ISI: 000515392300001Scopus ID: 2-s2.0-85081415161OAI: oai:DiVA.org:kth-300788DiVA, id: diva2:1595369
Merknad

QC 20210917

Tilgjengelig fra: 2021-09-17 Laget: 2021-09-17 Sist oppdatert: 2022-06-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Dabirian, Amir

Søk i DiVA

Av forfatter/redaktør
Dabirian, Amir
Av organisasjonen
I samme tidsskrift
European Journal of Marketing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 205 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf