Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data Augmentation of IMU Signals and Evaluation via a Semi-Supervised Classification of Driving Behavior
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Systemanalys och ekonomi.
Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA..
Politecn Torino, Dept Math Sci, Turin, Italy.;Lund Univ, Dept Automat Control, Lund, Sweden..
2020 (engelsk)Inngår i: 2020 IEEE 23rd international conference on intelligent transportation systems (ITSC), IEEE , 2020Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Over the past years, interest in classifying drivers' behavior from data has surged. Such interest is particularly relevant for car insurance companies who, due to privacy constraints, often only have access to data from Inertial Measurement Units (IMU) or similar. In this paper, we present a semi-supervised learning solution to classify portions of trips according to whether drivers are driving aggressively or normally based on such IMU data. Since the amount of labeled IMU data is limited and costly to generate, we utilize Recurrent Conditional Generative Adversarial Networks (RCGAN) to generate more labeled data. Our results show that, by utilizing RCGAN-generated labeled data, the classification of the drivers is improved in 79% of the cases, compared to when the drivers are classified with no generated data.

sted, utgiver, år, opplag, sider
IEEE , 2020.
Serie
IEEE International Conference on Intelligent Transportation Systems-ITSC, ISSN 2153-0009
Emneord [en]
IMU sensor, driving behaviors, data generation, data evaluation
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-302638DOI: 10.1109/ITSC45102.2020.9294496ISI: 000682770702001Scopus ID: 2-s2.0-85099661398OAI: oai:DiVA.org:kth-302638DiVA, id: diva2:1600208
Konferanse
23rd IEEE International Conference on Intelligent Transportation Systems (ITSC), SEP 20-23, 2020, ELECTR NETWORK
Merknad

QC 20211004

Tilgjengelig fra: 2021-10-04 Laget: 2021-10-04 Sist oppdatert: 2023-04-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Jaafer, Amani

Søk i DiVA

Av forfatter/redaktør
Jaafer, Amani
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 125 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf