Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Subdivisions of shellable complexes
Univ Calif Berkeley, Dept Math, Evans Hall, Berkeley, CA 94720 USA..
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).ORCID-id: 0000-0003-3451-7414
2022 (engelsk)Inngår i: Journal of combinatorial theory. Series A (Print), ISSN 0097-3165, E-ISSN 1096-0899, Vol. 186, artikkel-id 105553Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In geometric, algebraic, and topological combinatorics, the unimodality of combinatorial generating polynomials is frequently studied. Unimodality follows when the polynomial is (real) stable, a property often deduced via the theory of interlacing polynomials. Many of the open questions on stability and unimodality of polynomials pertain to the enumeration of faces of cell complexes. In this paper, we relate the theory of interlacing polynomials to the shellability of cell complexes. We first derive a sufficient condition for stability of the h-polynomial of a subdivision of a shellable complex. To apply it, we generalize the notion of reciprocal domains for convex embeddings of polytopes to abstract polytopes and use this generalization to define the family of stable shellings of a polytopal complex. We characterize the stable shellings of cubical and simplicial complexes, and apply this theory to answer a question of Brenti and Welker on barycentric subdivisions for the well-known cubical polytopes. We also give a positive solution to a problem of Mohammadi and Welker on edgewise subdivisions of cell complexes. We end by relating the family of stable line shellings to the combinatorics of hyperplane arrangements. We pose related questions, answers to which would resolve some long-standing problems while strengthening ties between the theory of interlacing polynomials and the combinatorics of hyperplane arrangements.

sted, utgiver, år, opplag, sider
Elsevier BV , 2022. Vol. 186, artikkel-id 105553
Emneord [en]
Shellability, Polytopal complex, Polytope, Subdivision, Real-rooted, Unimodal
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-304721DOI: 10.1016/j.jcta.2021.105553ISI: 000710310600002Scopus ID: 2-s2.0-85117610698OAI: oai:DiVA.org:kth-304721DiVA, id: diva2:1610173
Merknad

QC 20211110

Tilgjengelig fra: 2021-11-10 Laget: 2021-11-10 Sist oppdatert: 2022-06-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Solus, Liam

Søk i DiVA

Av forfatter/redaktør
Solus, Liam
Av organisasjonen
I samme tidsskrift
Journal of combinatorial theory. Series A (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 31 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf