Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On convergence for hybrid models of gene regulatory networks under polytopic uncertainties: a Lyapunov approach
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Centre for Advanced BioProduction by Continuous Processing, AdBIOPRO. Imperial Coll London, Dept Elect & Elect Engn, London, England.ORCID-id: 0000-0002-7856-4899
Imperial Coll London, Dept Elect & Elect Engn, London, England.;Univ Florence, Dept Informat Engn, Florence, Italy..
2021 (engelsk)Inngår i: Journal of Mathematical Biology, ISSN 0303-6812, E-ISSN 1432-1416, Vol. 83, nr 6-7, artikkel-id 64Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Hybrid models of genetic regulatory networks allow for a simpler analysis with respect to fully detailed quantitative models, still maintaining the main dynamical features of interest. In this paper we consider a piecewise affine model of a genetic regulatory network, in which the parameters describing the production function are affected by polytopic uncertainties. In the first part of the paper, after recalling how the problem of finding a Lyapunov function is solved in the nominal case, we present the considered polytopic uncertain system and then, after describing how to deal with sliding mode solutions, we prove a result of existence of a parameter dependent Lyapunov function subject to the solution of a feasibility linear matrix inequalities problem. In the second part of the paper, based on the previously described Lyapunov function, we are able to determine a set of domains where the system is guaranteed to converge, with the exception of a zero measure set of times, independently from the uncertainty realization. Finally a three nodes network example shows the validity of the results.

sted, utgiver, år, opplag, sider
Springer Nature , 2021. Vol. 83, nr 6-7, artikkel-id 64
Emneord [en]
Gene regulatory networks, Lyapunov methods, Linear matrix inequalities, Convergence analysis, Systems biology, Polytopic uncertainties
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-305663DOI: 10.1007/s00285-021-01690-3ISI: 000720434100001PubMedID: 34792652Scopus ID: 2-s2.0-85119418384OAI: oai:DiVA.org:kth-305663DiVA, id: diva2:1617082
Merknad

QC 20211206

Tilgjengelig fra: 2021-12-06 Laget: 2021-12-06 Sist oppdatert: 2023-12-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Pasquini, Mirko

Søk i DiVA

Av forfatter/redaktør
Pasquini, Mirko
Av organisasjonen
I samme tidsskrift
Journal of Mathematical Biology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 42 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf