Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Probabilistic Pareto plan generation for semiautomated multicriteria radiation therapy treatment planning
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematisk statistik. RaySearch Labs, Eugeniavagen 18, SE-17164 Stockholm, Sweden..ORCID-id: 0000-0001-6724-2547
RaySearch Labs, Eugeniavagen 18, SE-17164 Stockholm, Sweden..
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematisk statistik.ORCID-id: 0000-0003-0772-846X
2022 (engelsk)Inngår i: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 67, nr 4, artikkel-id 045001Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Objective. We propose a semiautomatic pipeline for radiation therapy treatment planning, combining ideas from machine learning-automated planning and multicriteria optimization (MCO). Approach. Using knowledge extracted from historically delivered plans, prediction models for spatial dose and dose statistics are trained and furthermore systematically modified to simulate changes in tradeoff priorities, creating a set of differently biased predictions. Based on the predictions, an MCO problem is subsequently constructed using previously developed dose mimicking functions, designed in such a way that its Pareto surface spans the range of clinically acceptable yet realistically achievable plans as exactly as possible. The result is an algorithm outputting a set of Pareto optimal plans, either fluence-based or machine parameter-based, which the user can navigate between in real time to make adjustments before a final deliverable plan is created. Main results. Numerical experiments performed on a dataset of prostate cancer patients show that one may often navigate to a better plan than one produced by a single-plan-output algorithm. Significance. We demonstrate the potential of merging MCO and a data-driven workflow to automate labor-intensive parts of the treatment planning process while maintaining a certain extent of manual control for the user.

sted, utgiver, år, opplag, sider
IOP Publishing Ltd , 2022. Vol. 67, nr 4, artikkel-id 045001
Emneord [en]
knowledge-based planning, multicriteria optimization, dose prediction, dose-volume histogram prediction, uncertainty modeling, dose mimicking
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-309049DOI: 10.1088/1361-6560/ac4da5ISI: 000752028200001PubMedID: 35061602Scopus ID: 2-s2.0-85125493677OAI: oai:DiVA.org:kth-309049DiVA, id: diva2:1642800
Merknad

QC 20220308

Tilgjengelig fra: 2022-03-08 Laget: 2022-03-08 Sist oppdatert: 2022-06-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Zhang, TianfangOlsson, Jimmy

Søk i DiVA

Av forfatter/redaktør
Zhang, TianfangOlsson, Jimmy
Av organisasjonen
I samme tidsskrift
Physics in Medicine and Biology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 199 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf