Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
GeomCA: Geometric Evaluation of Data Representations
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Beräkningsvetenskap och beräkningsteknik (CST).ORCID-id: 0000-0001-6920-5109
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.ORCID-id: 0000-0002-0900-1523
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.ORCID-id: 0000-0003-2965-2953
2021 (engelsk)Inngår i: International Conference On Machine Learning, Vol 139 / [ed] Meila, M Zhang, T, JMLR-JOURNAL MACHINE LEARNING RESEARCH , 2021, Vol. 139Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.

sted, utgiver, år, opplag, sider
JMLR-JOURNAL MACHINE LEARNING RESEARCH , 2021. Vol. 139
Serie
Proceedings of Machine Learning Research, ISSN 2640-3498
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-311619ISI: 000768182704069OAI: oai:DiVA.org:kth-311619DiVA, id: diva2:1655224
Konferanse
International Conference on Machine Learning (ICML), JUL 18-24, 2021, ELECTR NETWORK
Merknad

QC 20220502

Tilgjengelig fra: 2022-05-02 Laget: 2022-05-02 Sist oppdatert: 2025-02-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Poklukar, PetraVarava, AnastasiiaKragic, Danica

Søk i DiVA

Av forfatter/redaktør
Poklukar, PetraVarava, AnastasiiaKragic, Danica
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 77 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf