Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Residual Statistics-Based Current Sensor Fault Diagnosis for Smart Battery Management
Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100811, Peoples R China..
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.ORCID-id: 0000-0003-4232-7944
Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100811, Peoples R China..
Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100811, Peoples R China..
Vise andre og tillknytning
2022 (engelsk)Inngår i: IEEE Journal of Emerging and Selected Topics in Power Electronics, ISSN 2168-6777, E-ISSN 2168-6785, Vol. 10, nr 2, s. 2435-2444Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Current sensor fault diagnostic is critical to the safety of lithium-ion batteries (LIBs) to prevent over-charging and over-discharging. Motivated by this, this article proposes a novel residual statistics-based diagnostic method to detect two typical types of sensor faults, leveraging only the 50 current-voltage samples at the startup phase of the LIB system. In particular, the load current is estimated by using particle swarm optimization (PSO)-based model matching with measurable initial system states. The estimation residuals are analyzed statistically with Monte-Carlo simulation, from which an empirical residual threshold is generated and used for accurate current sensor fault diagnostic. The residual evaluation process is well proved with high robustness to the measurement noises and modeling uncertainties. The proposed method is validated experimentally to be effective in current sensor fault diagnosis with low miss alarm rate (MAR) and false alarm rate (FAR).

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE) , 2022. Vol. 10, nr 2, s. 2435-2444
Emneord [en]
Circuit faults, State of charge, Current measurement, Observers, Integrated circuit modeling, Fault diagnosis, Power electronics, Battery management system (BMS), current sensor fault diagnosis, lithium-ion battery (LIB), particle swarm optimization (PSO)
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-311669DOI: 10.1109/JESTPE.2021.3131696ISI: 000777346600095Scopus ID: 2-s2.0-85120542331OAI: oai:DiVA.org:kth-311669DiVA, id: diva2:1655328
Merknad

QC 20220502

Tilgjengelig fra: 2022-05-02 Laget: 2022-05-02 Sist oppdatert: 2022-06-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Bian, Xiaolei

Søk i DiVA

Av forfatter/redaktør
Bian, Xiaolei
Av organisasjonen
I samme tidsskrift
IEEE Journal of Emerging and Selected Topics in Power Electronics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 50 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf