Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Quadrature error estimates for layer potentials evaluated near curved surfaces in three dimensions
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA.ORCID-id: 0000-0001-7425-8029
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA.
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA.ORCID-id: 0000-0002-4290-1670
2022 (engelsk)Inngår i: Computers and Mathematics with Applications, ISSN 0898-1221, E-ISSN 1873-7668, Vol. 111, s. 1-19Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The quadrature error associated with a regular quadrature rule for evaluation of a layer potential increases rapidly when the evaluation point approaches the surface and the integral becomes nearly singular. Error estimates are needed to determine when the accuracy is insufficient and a more costly special quadrature method should be utilized.& nbsp;The final result of this paper are such quadrature error estimates for the composite Gauss-Legendre rule and the global trapezoidal rule, when applied to evaluate layer potentials defined over smooth curved surfaces in R-3. The estimates have no unknown coefficients and can be efficiently evaluated given the discretization of the surface, invoking a local one-dimensional root-finding procedure. They are derived starting with integrals over curves, using complex analysis involving contour integrals, residue calculus and branch cuts. By complexifying the parameter plane, the theory can be used to derive estimates also for curves in R3. These results are then used in the derivation of the estimates for integrals over surfaces. In this procedure, we also obtain error estimates for layer potentials evaluated over curves in R2. Such estimates combined with a local root-finding procedure for their evaluation were earlier derived for the composite Gauss-Legendre rule for layer potentials written in complex form [4]. This is here extended to provide quadrature error estimates for both complex and real formulations of layer potentials, both for the Gauss-Legendre and the trapezoidal rule.& nbsp;Numerical examples are given to illustrate the performance of the quadrature error estimates. The estimates for integration over curves are in many cases remarkably precise, and the estimates for curved surfaces in R-3 are also sufficiently precise, with sufficiently low computational cost, to be practically useful.

sted, utgiver, år, opplag, sider
Elsevier BV , 2022. Vol. 111, s. 1-19
Emneord [en]
Layer potential, Close evaluation, Quadrature, Nearly singular, Error estimate
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-312763DOI: 10.1016/j.camwa.2022.02.001ISI: 000789919800001Scopus ID: 2-s2.0-85124958447OAI: oai:DiVA.org:kth-312763DiVA, id: diva2:1660094
Merknad

QC 20220523

Tilgjengelig fra: 2022-05-23 Laget: 2022-05-23 Sist oppdatert: 2022-06-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

af Klinteberg, LudvigSorgentone, ChiaraTornberg, Anna-Karin

Søk i DiVA

Av forfatter/redaktør
af Klinteberg, LudvigSorgentone, ChiaraTornberg, Anna-Karin
Av organisasjonen
I samme tidsskrift
Computers and Mathematics with Applications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 393 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf