Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Billion atom molecular dynamics simulations of carbon at extreme conditions and experimental time and length scales
KTH, Skolan för teknikvetenskap (SCI), Fysik, Kondenserade materiens teori.ORCID-id: 0000-0001-7531-3210
Vise andre og tillknytning
2021 (engelsk)Inngår i: SC '21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Association for Computing Machinery (ACM) , 2021Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Billion atom molecular dynamics (MD) using quantum-Accurate machine-learning Spectral Neighbor Analysis Potential (SNAP) observed long-sought high pressure BC8 phase of carbon at extreme pressure (12 Mbar) and temperature (5,000 K). 24-hour, 4650 node production simulation on OLCF Summit demonstrated an unprecedented scaling and unmatched real-world performance of SNAP MD while sampling 1 nanosecond of physical time. Efficient implementation of SNAP force kernel in LAMMPS using the Kokkos CUDA backend on NVIDIA GPUs combined with excellent strong scaling (better than 97% parallel efficiency) enabled a peak computing rate of 50.0 PFLOPs (24.9% of theoretical peak) for a 20 billion atom MD simulation on the full Summit machine (27,900 GPUs). The peak MD performance of 6.21 Matom-steps/node-s is 22.9 times greater than a previous record for quantum-Accurate MD. Near perfect weak scaling of SNAP MD highlights its excellent potential to advance the frontier of quantum-Accurate MD to trillion atom simulations on upcoming exascale platforms.

sted, utgiver, år, opplag, sider
Association for Computing Machinery (ACM) , 2021.
Serie
International Conference for High Performance Computing, Networking, Storage and Analysis, SC, ISSN 2167-4329
Emneord [en]
carbon, extreme conditions, machine-learning interatomic potentials, molecular dynamics
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-312842DOI: 10.1145/3458817.3487400ISI: 000946520100095Scopus ID: 2-s2.0-85117901197OAI: oai:DiVA.org:kth-312842DiVA, id: diva2:1663335
Konferanse
33rd International Conference for High Performance Computing, Networking, Storage and Analysis: Science and Beyond, SC 2021, 14 November 2021 through 19 November 2021
Merknad

QC 20220602

Part of proceedings: ISBN 978-145038442-1

Tilgjengelig fra: 2022-06-02 Laget: 2022-06-02 Sist oppdatert: 2023-09-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Belonoshko, Anatoly

Søk i DiVA

Av forfatter/redaktør
Belonoshko, Anatoly
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 52 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf