Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Conditional mutual information-based contrastive loss for financial time series forecasting
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap.ORCID-id: 0000-0003-2579-2107
RISE Research Institutes of Sweden, Stockholm, Sweden.ORCID-id: 0000-0003-4298-3634
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap.ORCID-id: 0000-0002-7807-5681
2020 (engelsk)Inngår i: Proceedings ICAIF '20: The First ACM International Conference on AI in Finance, Association for Computing Machinery (ACM) , 2020Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We present a representation learning framework for financial time series forecasting. One challenge of using deep learning models for finance forecasting is the shortage of available training data when using small datasets. Direct trend classification using deep neural networks trained on small datasets is susceptible to the overfitting problem. In this paper, we propose to first learn compact representations from time series data, then use the learned representations to train a simpler model for predicting time series movements. We consider a class-conditioned latent variable model. We train an encoder network to maximize the mutual information between the latent variables and the trend information conditioned on the encoded observed variables. We show that conditional mutual information maximization can be approximated by a contrastive loss. Then, the problem is transformed into a classification task of determining whether two encoded representations are sampled from the same class or not. This is equivalent to performing pairwise comparisons of the training datapoints, and thus, improves the generalization ability of the encoder network. We use deep autoregressive models as our encoder to capture long-term dependencies of the sequence data. Empirical experiments indicate that our proposed method has the potential to advance state-of-the-art performance.

sted, utgiver, år, opplag, sider
Association for Computing Machinery (ACM) , 2020.
Emneord [en]
Classification (of information), Deep neural networks, Equivalence classes, Finance, Signal encoding, Time series, Compact representation, Conditional mutual information, Financial time series forecasting, Learn+, Learning frameworks, Learning models, Over fitting problem, Small data set, Time-series data, Training data, Forecasting
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-313547DOI: 10.1145/3383455.3422550Scopus ID: 2-s2.0-85095337230OAI: oai:DiVA.org:kth-313547DiVA, id: diva2:1669305
Konferanse
ICAIF '20: The First ACM International Conference on AI in Finance, New York, NY, USA, October 15-16, 2020
Merknad

Part of ISBN 9781450375849

QC 20220614

Tilgjengelig fra: 2022-06-14 Laget: 2022-06-14 Sist oppdatert: 2022-06-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Wu, HanweiGattami, AtherFlierl, Markus

Søk i DiVA

Av forfatter/redaktør
Wu, HanweiGattami, AtherFlierl, Markus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 30 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf