Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Investigating the Ability to Identify New Constructions in Urban Areas Using Images from Unmanned Aerial Vehicles, Google Earth, and Sentinel-2
Yazd Univ, Fac Nat Resources & Desert Studies, Dept Arid Land Management, Yazd 8915818411, Iran..
Yazd Univ, Dept Geog, Yazd 8915818411, Iran.;Delft Univ Technol, Dept Geosci & Engn, NL-2628 CD Delft, Netherlands..
Univ Tehran, Fac Nat Resources, Dept Arid & Mt Reg Reclamat, Tehran 1417935840, Iran..
Univ Tehran, Fac Geog, Dept Remote Sensing & GIS, Tehran 1417935840, Iran..
Vise andre og tillknytning
2022 (engelsk)Inngår i: Remote Sensing, E-ISSN 2072-4292, Vol. 14, nr 13, artikkel-id 3227Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

One of the main problems in developing countries is unplanned urban growth and land use change. Timely identification of new constructions can be a good solution to mitigate some environmental and social problems. This study examined the possibility of identifying new constructions in urban areas using images from unmanned aerial vehicles (UAV), Google Earth and Sentinel-2. The accuracy of the land cover map obtained using these images was investigated using pixel-based processing methods (maximum likelihood, minimum distance, Mahalanobis, spectral angle mapping (SAM)) and object-based methods (Bayes, support vector machine (SVM), K-nearest-neighbor (KNN), decision tree, random forest). The use of DSM to increase the accuracy of classification of UAV images and the use of NDVI to identify vegetation in Sentinel-2 images were also investigated. The object-based KNN method was found to have the greatest accuracy in classifying UAV images (kappa coefficient = 0.93), and the use of DSM increased the classification accuracy by 4%. Evaluations of the accuracy of Google Earth images showed that KNN was also the best method for preparing a land cover map using these images (kappa coefficient = 0.83). The KNN and SVM methods showed the highest accuracy in preparing land cover maps using Sentinel-2 images (kappa coefficient = 0.87 and 0.85, respectively). The accuracy of classification was not increased when using NDVI due to the small percentage of vegetation cover in the study area. On examining the advantages and disadvantages of the different methods, a novel method for identifying new rural constructions was devised. This method uses only one UAV imaging per year to determine the exact position of urban areas with no constructions and then examines spectral changes in related Sentinel-2 pixels that might indicate new constructions in these areas. On-site observations confirmed the accuracy of this method.

sted, utgiver, år, opplag, sider
MDPI , 2022. Vol. 14, nr 13, artikkel-id 3227
Emneord [en]
remote sensing, satellite images, UAV, land cover change, object-based classification
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-315843DOI: 10.3390/rs14133227ISI: 000824239500001Scopus ID: 2-s2.0-85133942304OAI: oai:DiVA.org:kth-315843DiVA, id: diva2:1684116
Merknad

QC 20220721

Tilgjengelig fra: 2022-07-21 Laget: 2022-07-21 Sist oppdatert: 2025-02-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Kalantari, Zahra

Søk i DiVA

Av forfatter/redaktør
Kalantari, Zahra
Av organisasjonen
I samme tidsskrift
Remote Sensing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 207 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf