Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
CoLLIE: Continual Learning of Language Grounding from Language-Image Embeddings
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.ORCID-id: 0000-0002-8579-1790
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.ORCID-id: 0000-0003-2140-0612
2022 (engelsk)Inngår i: The journal of artificial intelligence research, ISSN 1076-9757, E-ISSN 1943-5037, Vol. 74, s. 1201-1223Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper presents CoLLIE: a simple, yet effective model for continual learning of how language is grounded in vision. Given a pre-trained multimodal embedding model, where language and images are projected in the same semantic space (in this case CLIP by OpenAI), CoLLIE learns a transformation function that adjusts the language embeddings when needed to accommodate new language use. This is done by predicting the difference vector that needs to be applied, as well as a scaling factor for this vector, so that the adjustment is only applied when needed. Unlike traditional few-shot learning, the model does not just learn new classes and labels, but can also generalize to similar language use and leverage semantic compositionality. We verify the model's performance on two different tasks of identifying the targets of referring expressions, where it has to learn new language use. The results show that the model can efficiently learn and generalize from only a few examples, with little interference with the model's original zero-shot performance.

sted, utgiver, år, opplag, sider
AI Access Foundation , 2022. Vol. 74, s. 1201-1223
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-315872DOI: 10.1613/JAIR.1.13689ISI: 000825139300002Scopus ID: 2-s2.0-85136141290OAI: oai:DiVA.org:kth-315872DiVA, id: diva2:1684836
Prosjekter
tmh_grounding
Merknad

QC 20220728

Tilgjengelig fra: 2022-07-28 Laget: 2022-07-28 Sist oppdatert: 2025-02-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Skantze, GabrielWillemsen, Bram

Søk i DiVA

Av forfatter/redaktør
Skantze, GabrielWillemsen, Bram
Av organisasjonen
I samme tidsskrift
The journal of artificial intelligence research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 146 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf