Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Synthesis of Pediatric Brain Tumor Image With Mass Effect
KTH, Skolan för kemi, bioteknologi och hälsa (CBH). (Division of biomedical imaging)
2022 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAlternativ tittel
Syntes av pediatrisk hjärntumörbild med masseffekt (svensk)
Abstract [en]

During the last few years, deep learning-based techniques have made much progress in the medical image processing field, such as segmentation and registration. The main characteristic of these methods is the large demand of medical images to do model training. However, the acquisition of these data is often difficult, due to the high expense and ethical issues. As a consequence, the lack of data may lead to poor performance and overfitting. To tackle this problem, we propose a data augmentation algorithm in this paper to inpaint the tumor on healthy pediatric brain MRI images to simulate pathological images. Since the growth of tumor may cause deformation and edema of the surrounding tissues which is called the 'mass effect', a probabilistic UNet is applied to mimic this deformation field. Then, instead of directly adding the tumor to the image, the GAN-based method is applied to transfer the mask to the image and make it more plausible, both visually and anatomically. Meanwhile, the annotations of the different brain tissues are also obtained by employing the deformation field to the original labels. Finally, the synthesized image together with the real dataset is trained to do the tumor segmentation task, and the results indicate a statistical improvement in accuracy.

sted, utgiver, år, opplag, sider
2022. , s. 62
Serie
TRITA-CBH-GRU ; 2022:112
Emneord [en]
Deep learning, Medical Imaging, Data Augmentation, Children Brain Tumor, Mass effect
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-316260OAI: oai:DiVA.org:kth-316260DiVA, id: diva2:1686799
Fag / kurs
Medical Engineering
Utdanningsprogram
Master of Science - Medical Engineering
Veileder
Examiner
Tilgjengelig fra: 2022-08-19 Laget: 2022-08-11 Sist oppdatert: 2022-08-19bibliografisk kontrollert

Open Access i DiVA

fulltext(13757 kB)547 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 13757 kBChecksum SHA-512
05ca7948e4ae6c4098bb38b8c00713aff9783927d0edba01b594126936619471bbde2100482564850cf1f41b48a52596c70ca9cfe81940cd9334d82c53410164
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 547 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 326 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf