Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multiscale characterisation of chimneys/pipes: Fluid escape structures within sedimentary basins
Vise andre og tillknytning
2021 (engelsk)Inngår i: International Journal of Greenhouse Gas Control, ISSN 1750-5836, E-ISSN 1878-0148, Vol. 106, s. 103245-103245, artikkel-id 103245Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Evaluation of seismic reflection data has identified the presence of fluid escape structures cross-cutting overburden stratigraphy within sedimentary basins globally. Seismically-imaged chimneys/pipes are considered to be possible pathways for fluid flow, which may hydraulically connect deeper strata to the seabed. The properties of fluid migration pathways through the overburden must be constrained to enable secure, long-term subsurface carbon dioxide (CO2) storage. We have investigated a site of natural active fluid escape in the North Sea, the Scanner pockmark complex, to determine the physical characteristics of focused fluid conduits, and how they control fluid flow. Here we show that a multi-scale, multi-disciplinary experimental approach is required for complete characterisation of fluid escape structures. Geophysical techniques are necessary to resolve fracture geometry and subsurface structure (e.g., multi-frequency seismics) and physical parameters of sediments (e.g., controlled source electromagnetics) across a wide range of length scales (m to km). At smaller (mm to cm) scales, sediment cores were sampled directly and their physical and chemical properties assessed using laboratory-based methods. Numerical modelling approaches bridge the resolution gap, though their validity is dependent on calibration and constraint from field and laboratory experimental data. Further, time-lapse seismic and acoustic methods capable of resolving temporal changes are key for determining fluid flux. Future optimisation of experiment resource use may be facilitated by the installation of permanent seabed infrastructure, and replacement of manual data processing with automated workflows. This study can be used to inform measurement, monitoring and verification workflows that will assist policymaking, regulation, and best practice for CO2 subsurface storage operations. 

sted, utgiver, år, opplag, sider
Elsevier, 2021. Vol. 106, s. 103245-103245, artikkel-id 103245
Emneord [en]
Chimneys, CO2 sequestration, Geological storage, North Sea, Overburden, Pipes
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-317258DOI: 10.1016/j.ijggc.2020.103245ISI: 000631641700001Scopus ID: 2-s2.0-85100874388OAI: oai:DiVA.org:kth-317258DiVA, id: diva2:1694092
Forskningsfinansiär
NERC - the Natural Environment Research Council
Merknad

QC 20220908

Tilgjengelig fra: 2022-09-08 Laget: 2022-09-08 Sist oppdatert: 2025-02-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Reinardy, Benedict T. I.

Søk i DiVA

Av forfatter/redaktør
Reinardy, Benedict T. I.
I samme tidsskrift
International Journal of Greenhouse Gas Control

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 23 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf