Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Private Stochastic Dual Averaging for Decentralized Empirical Risk Minimization
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik. (Digital Futures)
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik. (Digital Futures)ORCID-id: 0000-0001-9940-5929
Univ Victoria, Dept Mech Engn, Victoria, BC V8W 3P6, Canada..
2022 (engelsk)Inngår i: 9th IFAC Conference on Networked Systems NECSYS 2022Zürich, Switzerland, 5–7 July 2022, Elsevier BV , 2022, Vol. 55, nr 13, s. 43-48Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this work, we study the decentralized empirical risk minimization problem under the constraint of differential privacy (DP). Based on the algorithmic framework of dual averaging, we develop a novel decentralized stochastic optimization algorithm to solve the problem. The proposed algorithm features the following: i) it perturbs the stochastic subgradient evaluated over individual data samples, with which the information about the dataset can be released in a differentially private manner; ii) it employs hyperparameters that are more aggressive than conventional decentralized dual averaging algorithms to speed up convergence. The upper bound for the utility loss of the proposed algorithm is proven to be smaller than that of existing methods to achieve the same level of DP. As a by-product, when removing the perturbation, the non-private version of the proposed algorithm attains the optimal O(1/t) convergence rate for smooth stochastic optimization. Finally, experimental results are presented to demonstrate the effectiveness of the algorithm.

sted, utgiver, år, opplag, sider
Elsevier BV , 2022. Vol. 55, nr 13, s. 43-48
Serie
IFAC-PapersOnLine, ISSN 2405-8963 ; 55
Emneord [en]
Dual averaging, differential privacy, distributed optimization, convex optimization, large scale optimization problems
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-319443DOI: 10.1016/j.ifacol.2022.07.233ISI: 000852734000008Scopus ID: 2-s2.0-85137167981OAI: oai:DiVA.org:kth-319443DiVA, id: diva2:1699966
Konferanse
9th IFAC Conference on Networked Systems, NECSYS 2022, Zurich, 5 July 2022, through 7 July 2022
Merknad

QC 20220929

Tilgjengelig fra: 2022-09-29 Laget: 2022-09-29 Sist oppdatert: 2025-02-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Liu, ChangxinJohansson, Karl H.

Søk i DiVA

Av forfatter/redaktør
Liu, ChangxinJohansson, Karl H.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 33 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf