Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Knowledge Base Question Answering System for Cyber Threat Knowledge Acquisition
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
University of California, Berkeley, United States.
Virginia Tech, United States.
2022 (engelsk)Inngår i: 2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), Institute of Electrical and Electronics Engineers (IEEE) , 2022, s. 3158-3161Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Open-source cyber threat intelligence (OSCTI) provides a form of evidence-based knowledge about cyber threats, enabling businesses to gain visibility into the fast-evolving threat landscape. Despite the pressing need for high-fidelity threat knowledge, existing cyber threat knowledge acquisition systems have primarily focused on providing low-level, isolated indicators. These systems have ignored the rich higher-level threat knowledge entities and their relationships presented in OSCTI reports, and do not provide a flexible and intuitive way for threat analysts to acquire the desired knowledge. To bridge the gap, we propose THREATQA, a system that facilitates cyber threat knowledge acquisition via knowledge base question answering. Particularly, THREATQA uses a combination of AI-based techniques to (1) automatically harvest comprehensive knowledge about trending threats from massive OSCTI reports from various sources and construct a large threat knowledge base, and (2) intelligently respond to an input natural language threat knowledge acquisition question by fetching the answer from the threat knowledge base via question answering.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE) , 2022. s. 3158-3161
Serie
IEEE International Conference on Data Engineering, ISSN 1084-4627
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-321012DOI: 10.1109/ICDE53745.2022.00287ISI: 000855078403022Scopus ID: 2-s2.0-85136370670OAI: oai:DiVA.org:kth-321012DiVA, id: diva2:1708441
Konferanse
38th IEEE International Conference on Data Engineering (ICDE), MAY 09-11, 2022, ELECTR NETWORK
Merknad

Part of proceedings: ISBN 978-1-6654-0883-7

QC 20221104

Tilgjengelig fra: 2022-11-04 Laget: 2022-11-04 Sist oppdatert: 2022-11-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Ji, Zhengjie

Søk i DiVA

Av forfatter/redaktør
Ji, Zhengjie
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 44 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf