Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improved Battery Cycle Life Prediction Using a Hybrid Data-Driven Model Incorporating Linear Support Vector Regression and Gaussian
KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Farkostteknik och Solidmekanik. ABB AB Corporate Research, Forskargränd 7, SE-721 78 Västerås, Sweden.ORCID-id: 0000-0001-6551-9784
2022 (engelsk)Inngår i: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 23, nr 7, artikkel-id e202100829Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The ability to accurately predict lithium-ion battery life-time already at an early stage of battery usage is critical for ensuring safe operation, accelerating technology development, and enabling battery second-life applications. Many models are unable to effectively predict battery life-time at early cycles due to the complex and nonlinear degrading behavior of lithium-ion batteries. In this study, two hybrid data-driven models, incorporating a traditional linear support vector regression (LSVR) and a Gaussian process regression (GPR), were developed to estimate battery life-time at an early stage, before more severe capacity fading, utilizing a data set of 124 battery cells with lifetimes ranging from 150 to 2300 cycles. Two type of hybrid models, here denoted as A and B, were proposed. For each of the models, we achieved 1.1 % (A) and 1.4 % (B) training error, and similarly, 8.3 % (A) and 8.2 % (B) test error. The two key advantages are that the error percentage is kept below 10 % and that very low error values for the training and test sets were observed when utilizing data from only the first 100 cycles.The proposed method thus appears highly promising for predicting battery life during early cycles. 

sted, utgiver, år, opplag, sider
Wiley , 2022. Vol. 23, nr 7, artikkel-id e202100829
Emneord [en]
battery cycle life, cycle life prediction, data-driven modeling, Gaussian process regression, linear support vector regression, Errors, Forecasting, Gaussian distribution, Gaussian noise (electronic), Life cycle, Regression analysis, Battery life time, Cycle life predictions, Data-driven model, Gaussians, Hybrid datum, Safe operation, Support vector regressions, Lithium-ion batteries
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-321185DOI: 10.1002/cphc.202100829ISI: 000762567400001PubMedID: 35075749Scopus ID: 2-s2.0-85125384789OAI: oai:DiVA.org:kth-321185DiVA, id: diva2:1709542
Merknad

QC 20221109

Tilgjengelig fra: 2022-11-09 Laget: 2022-11-09 Sist oppdatert: 2023-07-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Tavallaey, Shiva Sander

Søk i DiVA

Av forfatter/redaktør
Tavallaey, Shiva Sander
Av organisasjonen
I samme tidsskrift
ChemPhysChem

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 154 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf