Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning-based symbolic abstractions for nonlinear control systems?
Osaka Univ, Grad Sch Engn, Suita, Japan..
Univ Paris Saclay, Lab Signaux & Syst, CNRS, Cent Supelec, Gif Sur Yvette, France..
Natl Inst Informat NII, Tokyo, Japan..
Osaka Univ, Grad Sch Engn & Sci, Toyonaka, Japan..
Vise andre og tillknytning
2022 (engelsk)Inngår i: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 146, s. 110646-, artikkel-id 110646Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Symbolic models or abstractions are known to be powerful tools for the control design of cyber- physical systems (CPSs) with logic specifications. In this paper, we investigate a novel learning-based approach to the construction of symbolic models for nonlinear control systems. In particular, the symbolic model is constructed based on learning the un-modeled part of the dynamics from training data based on state-space exploration, and the concept of an alternating simulation relation that represents behavioral relationships with respect to the original control system. Moreover, we aim at achieving safe exploration, meaning that the trajectory of the system is guaranteed to be in a safe region for all times while collecting the training data. In addition, we provide some techniques to reduce the computational load, in terms of memory and computation time,of constructing the symbolic models and the safety controller synthesis, so as to make our approach practical. Finally, a numerical simulation illustrates the effectiveness of the proposed approach.

sted, utgiver, år, opplag, sider
Elsevier BV , 2022. Vol. 146, s. 110646-, artikkel-id 110646
Emneord [en]
Symbolic models, Uncertain systems, Safety controller synthesis, Gaussian processes
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-321314DOI: 10.1016/j.automatica.2022.110646ISI: 000871118300009Scopus ID: 2-s2.0-85139994025OAI: oai:DiVA.org:kth-321314DiVA, id: diva2:1710226
Merknad

QC 20221111

Tilgjengelig fra: 2022-11-11 Laget: 2022-11-11 Sist oppdatert: 2022-11-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Dimarogonas, Dimos V.

Søk i DiVA

Av forfatter/redaktør
Dimarogonas, Dimos V.
Av organisasjonen
I samme tidsskrift
Automatica

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 10 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf