Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Measuring Issue Ownership using Word Embeddings
2018 (engelsk)Annet (Annet vitenskapelig)
Abstract [en]

Sentiment and topic analysis are commonmethods used for social media monitoring.Essentially, these methods answers questionssuch as, “what is being talked about, regardingX”, and “what do people feel, regarding X”.In this paper, we investigate another venue forsocial media monitoring, namely issue ownership and agenda setting, which are conceptsfrom political science that have been used toexplain voter choice and electoral outcomes.We argue that issue alignment and agenda setting can be seen as a kind of semantic sourcesimilarity of the kind “how similar is sourceA to issue owner P, when talking about issue X”, and as such can be measured usingword/document embedding techniques. Wepresent work in progress towards measuringthat kind of conditioned similarity, and introduce a new notion of similarity for predictive embeddings. We then test this methodby measuring the similarity between politically aligned media and political pparties, conditioned on bloc-specific issues.

sted, utgiver, år, sider
2018.
Emneord [en]
Natural Sciences, Naturvetenskap
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-322155OAI: oai:DiVA.org:kth-322155DiVA, id: diva2:1715716
Merknad

QC 20221202

Tilgjengelig fra: 2022-12-02 Laget: 2022-12-02 Sist oppdatert: 2024-03-18bibliografisk kontrollert
Inngår i avhandling
1. Quantifying Meaning
Åpne denne publikasjonen i ny fane eller vindu >>Quantifying Meaning
2023 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [sv]

Distributionella semantikmodeller är en klass av maskininlärningsmodeller med syfte att konstruera representationer som fångar semantik, i.e. mening, av objekt som bär mening på ett datadrivet sätt. Denna avhandling är särskilt inriktad på konstruktion av semantisk representation av ord, en strävan som har en lång historia inom datalingvistik och som sett dramatiska utvecklingar under de senaste åren.

Det primära forskningsmålet med denna avhandling är att utforska gränserna och tillämpningarna av distributionella semantikmodeller av ord, i.e. word embeddings. I synnerhet utforskar den relationen mellan modell- och embeddingsemantik, det vill säga hur modelldesign påverkar vad ord-embeddings innehåller, hur man resonerar om ord-embeddings, och hur egenskaperna hos modellen kan utnyttjas för att extrahera ny information från embeddings. Konkret introducerar vi topologiskt medvetna grannskapsfrågor som berikar den information som erhålls från grannskap extraherade från distributionella sematikmodeller, villkorade likhetsfrågor (och modeller som möjliggör dem), konceptutvinning från distributionella semantikmodeller, tillämpningar av embbeddningmodeller inom statsvetenskap, samt en grundlig utvärdering av en bred mängd av distributionella semantikmodeller.

Abstract [en]

Distributional semantic models are a class of machine learning models with the aim of constructing representations that capture the semantics, i.e. meaning, of objects that carry meaning in a data-driven fashion. This thesis is particularly concerned with the construction of semantic representations of words, an endeavour that has a long history in computational linguistics, and that has seen dramatic developments in recent years.

The primary research objective of this thesis is to explore the limits and applications of distributional semantic models of words, i.e. word embeddings. In particular, it explores the relation between model and embedding semantics, i.e. how model design influences what our embeddings encode, how to reason about embeddings, and how properties of the model can be exploited to extract novel information from embeddings. Concretely, we introduce topologically aware neighborhood queries that enrich the information gained from neighborhood queries on distributional semantic models, conditioned similarity queries (and models enabling them), concept extraction from distributional semantic models, applications of embedding models in the realm of political science, as well as a thorough evaluation of a broad range of distributional semantic models. 

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2023. s. 45
Serie
TRITA-EECS-AVL ; 2023:2
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
urn:nbn:se:kth:diva-322262 (URN)978-91-8040-444-0 (ISBN)
Disputas
2023-01-17, Zoom: https://kth-se.zoom.us/j/66943302856, F3, Lindstedtsvägen 26, Stockholm, 09:00 (engelsk)
Opponent
Veileder
Merknad

QC 20221207

Tilgjengelig fra: 2022-12-08 Laget: 2022-12-07 Sist oppdatert: 2025-02-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Gyllensten, Amaru Cuba

Søk i DiVA

Av forfatter/redaktør
Gyllensten, Amaru Cuba

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 25 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf