Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Energy Management of Smart Homes with Electric Vehicles Using Deep Reinforcement Learning
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elkraftteknik.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elkraftteknik.ORCID-id: 0000-0002-2793-9048
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elkraftteknik.ORCID-id: 0000-0003-3014-5609
2022 (engelsk)Inngår i: 2022 24th european conference on power electronics and applications (EPE'22 ECCE europe), IEEE, 2022Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The proliferation of electric vehicles (EVs) has resulted in new charging infrastructure at all levels, including domestically. These new domestic EVs can potentially provide vehicle to home (V2H) services where EVs are used as energy storage systems (ESSs) for the home when they are not in use. Energy management systems (EMSs) can control these EVs to minimize the electricity cost to the owner but must satisfy constraints. Uncertainty in EV availability and the microgrid environment is also a challenge and can be addressed through real-time operation. Hence this paper formulates the EV charge/discharge scheduling problem as a Markov Decision Process (MDP). A safe implementation of Proximal Policy Optimization (PPO) is proposed for real-time optimization and compared to a day-ahead Mixed Integer Linear Programming (MILP) benchmark. The resulting PPO agent is able to minimize RA and SD costs for a typical EV user 3% better than the MILP solution. It obtains a 39% higher electricity cost than MILP, but unlike MILP does not require accurate forecasting data and operates in real-time.

sted, utgiver, år, opplag, sider
IEEE, 2022.
Serie
European Conference on Power Electronics and Applications, ISSN 2325-0313
Emneord [en]
Energy Management System (EMS), Microgrid, Electric Vehicle, Energy storage, Deep learning, Safety
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-323920ISI: 000886231600108Scopus ID: 2-s2.0-85141585101OAI: oai:DiVA.org:kth-323920DiVA, id: diva2:1739608
Konferanse
24th European Conference on Power Electronics and Applications (EPE ECCE Europe), SEP 05-09, 2022, Hanover, GERMANY
Merknad

QC 20230227

Tilgjengelig fra: 2023-02-27 Laget: 2023-02-27 Sist oppdatert: 2023-06-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Person

Weiss, XavierXu, QianwenNordström, Lars

Søk i DiVA

Av forfatter/redaktør
Weiss, XavierXu, QianwenNordström, Lars
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 108 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf