Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving the Robustness of Deep Neural Networks against Adversarial Examples via Adversarial Training with Maximal Coding Rate Reduction
KTH, Skolan för elektroteknik och datavetenskap (EECS).
2022 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAlternativ tittel
Förbättra Robustheten hos Djupa Neurala Nätverk mot Exempel på en Motpart genom Utbildning för motståndare med Maximal Minskning av Kodningshastigheten (svensk)
Abstract [en]

Deep learning is one of the hottest scientific topics at the moment. Deep convolutional networks can solve various complex tasks in the field of image processing. However, adversarial attacks have been shown to have the ability of fooling deep learning models. An adversarial attack is accomplished by applying specially designed perturbations on the input image of a deep learning model. The noises are almost visually indistinguishable to human eyes, but can fool classifiers into making wrong predictions. In this thesis, adversarial attacks and methods to improve deep learning ’models robustness against adversarial samples were studied.

Five different adversarial attack algorithm were implemented. These attack algorithms included white-box attacks and black-box attacks, targeted attacks and non-targeted attacks, and image-specific attacks and universal attacks. The adversarial attacks generated adversarial examples that resulted in significant drop in classification accuracy.

Adversarial training is one commonly used strategy to improve the robustness of deep learning models against adversarial examples. It is shown that adversarial training can provide an additional regularization benefit beyond that provided by using dropout. Adversarial training is performed by incorporating adversarial examples into the training process. Traditionally, during this process, cross-entropy loss is used as the loss function.

In order to improve the robustness of deep learning models against adversarial examples, in this thesis we propose two new methods of adversarial training by applying the principle of Maximal Coding Rate Reduction. The Maximal Coding Rate Reduction loss function maximizes the coding rate difference between the whole data set and the sum of each individual class. We evaluated the performance of different adversarial training methods by comparing the clean accuracy, adversarial accuracy and local Lipschitzness. It was shown that adversarial training with Maximal Coding Rate Reduction loss function would yield a more robust network than the traditional adversarial training method.

Abstract [sv]

Djupinlärning är ett av de hetaste vetenskapliga ämnena just nu. Djupa konvolutionella nätverk kan lösa olika komplexa uppgifter inom bildbehandling. Det har dock visat sig att motståndarattacker har förmågan att lura djupa inlärningsmodeller. En motståndarattack genomförs genom att man tillämpar särskilt utformade störningar på den ingående bilden för en djup inlärningsmodell. Störningarna är nästan visuellt omöjliga att särskilja för mänskliga ögon, men kan lura klassificerare att göra felaktiga förutsägelser. I den här avhandlingen studerades motståndarattacker och metoder för att förbättra djupinlärningsmodellers robusthet mot motståndarexempel.

Fem olika algoritmer för motståndarattack implementerades. Dessa angreppsalgoritmer omfattade white-box-attacker och black-box-attacker, riktade attacker och icke-målinriktade attacker samt bildspecifika attacker och universella attacker. De negativa attackerna genererade motståndarexempel som ledde till en betydande minskning av klassificeringsnoggrannheten.

Motståndsträning är en vanligt förekommande strategi för att förbättra djupinlärningsmodellernas robusthet mot motståndarexempel. Det visas att motståndsträning kan ge en ytterligare regulariseringsfördel utöver den som ges genom att använda dropout. Motståndsträning utförs genom att man införlivar motståndarexempel i träningsprocessen. Traditionellt används under denna process cross-entropy loss som förlustfunktion.

För att förbättra djupinlärningsmodellernas robusthet mot motståndarexempel föreslår vi i den här avhandlingen två nya metoder för motståndsträning genom att tillämpa principen om maximal minskning av kodningshastigheten. Förlustfunktionen Maximal Coding Rate Reduction maximerar skillnaden i kodningshastighet mellan hela datamängden och summan av varje enskild klass. Vi utvärderade prestandan hos olika metoder för motståndsträning genom att jämföra ren noggrannhet, motstånds noggrannhet och lokal Lipschitzness. Det visades att motståndsträning med förlustfunktionen Maximal Coding Rate Reduction skulle ge ett mer robust nätverk än den traditionella motståndsträningsmetoden.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology , 2022. , s. 88
Serie
TRITA-EECS-EX ; 2022:912
Emneord [en]
Machine learning, Deep neural networks, Loss function, Adversarial example, Adversarial attack, Adversarial training
Emneord [sv]
Maskininlärning, Djupa neurala nätverk, Förlustfunktion, Motståndarexempel, Motståndarattack, Motståndsträning
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-325671OAI: oai:DiVA.org:kth-325671DiVA, id: diva2:1749926
Fag / kurs
Electrical Engineering
Veileder
Examiner
Merknad

QC 20250611

Tilgjengelig fra: 2023-08-07 Laget: 2023-04-11 Sist oppdatert: 2025-06-11bibliografisk kontrollert

Open Access i DiVA

fulltext(2192 kB)230 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2192 kBChecksum SHA-512
31dac7b189a186c4d9dfe6227f6748569264f4d902ad5de13eb07ba9139138eb33f088ef0ff227a9b858ee538d10174610f0755fadfe20c838327b8de97faeaf
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Chu, Hsiang-Yu
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 232 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 285 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf