Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Root Cause Analysis and Classification for Firewall Log Events Using NLP Methods
KTH, Skolan för elektroteknik och datavetenskap (EECS).
2022 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAlternativ tittel
Rotorsaksanalys och klassificering för brandväggslogghändelser med hjälp av NLP-metoder (svensk)
Abstract [en]

Network log records are robust evidence for enterprises to make error diagnoses. The current method of Ericsson’s Networks team for troubleshooting is mainly by manual observation. However, as the system is getting vast and complex, the log messages show a growth trend. At this point, it is vital to accurately and quickly discern the root cause of error logs. This thesis proposes models that can address two main problems applying Natural Language Processing methods: manual log root cause classification is progressed to automated classification and Question Answering (QA) system to give root cause directly. Models are validated on Ericsson’s firewall traffic data. Different feature extraction methods and classification models are chosen, with the more effective Term Frequency-Inverse Document Frequency (TF-IDF) method combined with a Random Forest classifier obtaining the F1 score of 0.87 and Bidirectional Encoder Representations from Transformers (BERT) fine-tuned classification obtaining the F1 score of 0.90. The validated QA model also gets good performance in quality assessment. The final results demonstrate that the proposed models can optimize manual analysis. While choosing algorithms, deep learning models such as BERT can produce similar or even better results than Random Forest and Naive Bayes classifiers. However, it is complex to implement the BERT since it requires more resources compared to more straightforward solutions and more caution.

Abstract [sv]

Nätverksloggposter är robusta bevis för företag att göra feldiagnoser. Ericssons nätverksteams nuvarande metod för felsökning är huvudsakligen manuell observation. Men eftersom systemet blir stort och komplext visar loggmeddelandena en tillväxttrend. Vid denna tidpunkt är det viktigt att noggrant och snabbt urskilja grundorsaken till felloggar. Den här avhandlingen föreslår modeller som kan lösa två huvudproblem vid tillämpning av Natural Language Processing-metoder: manuell logggrundorsaksklassificering går vidare till automatiserad klassificering och QA-system (Question Answering) för att ge grundorsaken direkt. Modellerna är validerade på Ericssons brandväggstrafikdata. Olika funktionsextraktionsmetoder och klassificeringsmodeller valdes, med den mer effektiva metoden Term Frequency-Inverse Document Frequency (TF-IDF) kombinerad med en Random Forest-klassificerare som fick ett F1-poäng på 0,87 och Bidirectional Encoder Representations from Transformers (BERT) finjusterade klassificering som erhåller en F1-poäng på 0,90. Den validerade QA-modellen får också bra prestanda vid kvalitetsbedömning. De slutliga resultaten visar att de föreslagna modellerna kan optimera manuell analys. När man väljer algoritmer kan djupinlärningsmodeller som BERT ge liknande eller till och med bättre resultat än Random Forest och Naive Bayes klassificerare. Det är dock komplicerat att implementera BERT eftersom det kräver mer resurser jämfört med enklare lösningar och mer försiktighet.

sted, utgiver, år, opplag, sider
2022. , s. 58
Serie
TRITA-EECS-EX ; 2022:935
Emneord [en]
Log Analysis, BERT, Natural Language Processing, Log Classification, Transformers
Emneord [sv]
Log Analysis, BERT, Naturligt språk-behandling, Log-Klassificering, Transformers
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-325737OAI: oai:DiVA.org:kth-325737DiVA, id: diva2:1750628
Eksternt samarbeid
Ericsson AB
Veileder
Examiner
Tilgjengelig fra: 2023-08-07 Laget: 2023-04-13 Sist oppdatert: 2023-08-07bibliografisk kontrollert

Open Access i DiVA

fulltext(1368 kB)574 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1368 kBChecksum SHA-512
0e862a76bccd09240532124b9f3e62898097f6a0cd14c52877cc90c988fa10a67f22d97ea5091c15920c0e812fea138f1af07f2766d1a47cb2af7c9345899e9e
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 575 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 301 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf