Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessing the Streamline Plausibility Through Convex Optimization for Microstructure Informed Tractography(COMMIT) with Deep Learning
KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
2023 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAlternativ tittel
Bedömning av strömlinjeformligheten genom konvex optimering för mikrostrukturinformerad traktografi (COMMIT) med djupinlärning (svensk)
Abstract [en]

Tractography is widely used in the brain connectivity study from diffusion magnetic resonance imaging data. However, lack of ground truth and plenty of anatomically implausible streamlines in the tractograms have caused challenges and concerns in the use of tractograms such as brain connectivity study. Tractogram filtering methods have been developed to remove the faulty connections. In this study, we focus on one of these filtering methods, Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT), which tries to find a set of streamlines that best reconstruct the diffusion magnetic resonance imaging data with global optimization approach. There are biases with this method when assessing individual streamlines. So a method named randomized COMMIT(rCOMMIT) is proposed to obtain multiple assessments for each streamline. The acceptance rate from this method is introduced to the streamlines and divides them into three groups, which are regarded as pseudo ground truth from rCOMMIT. Therefore, the neural networks are able to train on the pseudo ground truth on classification tasks. The trained classifiers distinguish the obtained groups of plausible and implausible streamlines with accuracy around 77%. Following the same methodology, the results from rCOMMIT and randomized SIFT are compared. The intersections between two methods are analyzed with neural networks as well, which achieve accuracy around 87% in binary task between plausible and implausible streamlines. 

sted, utgiver, år, opplag, sider
2023. , s. 49
Serie
TRITA-CBH-GRU ; 023:072
Emneord [en]
Tractography, dMRI, Filtering Methods, Deep Learning, Classification
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-326496OAI: oai:DiVA.org:kth-326496DiVA, id: diva2:1754277
Fag / kurs
Medical Engineering
Utdanningsprogram
Master of Science - Medical Engineering
Veileder
Examiner
Tilgjengelig fra: 2023-05-12 Laget: 2023-05-03 Sist oppdatert: 2023-05-12bibliografisk kontrollert

Open Access i DiVA

fulltext(2569 kB)252 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 2569 kBChecksum SHA-512
af776792d7b09bde8b4b40aa4235b13536a593e5ba4951931a0d692871329d49579b8fde7b1cccb4aa909abb7a219ccbf73d07c7cf1b7089b6768617ff867460
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 253 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 803 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf